test_einsum_v2.py 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import paddle
from paddle.fluid import core

import os
21

22 23 24 25
os.environ['FLAGS_new_einsum'] = "1"


def error_trans(func, *args, **kargs):
26 27
    """
    transport C++ exception into Python exception.
28 29 30 31 32 33
    because einsum_v2 raise different exception with einsum_v1.
    """
    try:
        out = func(*args, **kargs)
    except ValueError as e:
        if "Same label have different shapes" in str(e):
34 35 36 37
            raise AssertionError(
                "Invalid operands: label i "
                "corresponds to non-broadcastable dimensions."
            )
38 39 40 41 42 43 44 45 46 47


class TestErrors(unittest.TestCase):
    def setUp(self):
        pass

    def test_param_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(
48 49 50
            AssertionError,
            ("Required at least one operand in Einsum API, but received 0 "),
        ):
51
            paddle.einsum('ijk')
52
        with self.assertRaisesRegex(
53 54
            AssertionError, ('Invalid equation: multiple `->` were found.')
        ):
55
            paddle.einsum('i -> j -> k', a)
56
        with self.assertRaisesRegex(
57 58 59 60 61 62
            AssertionError,
            (
                "Invalid equation: the number of operands is 2, "
                "but found 3 segments in the label equation."
            ),
        ):
63
            paddle.einsum('i,j,k', a, a)
64
        with self.assertRaisesRegex(
65 66 67 68 69 70
            AssertionError,
            (
                "Invalid equation: the number of operands is 2, "
                "but found 1 segments in the label equation."
            ),
        ):
71
            paddle.einsum('ij -> k', a, a)
72
        with self.assertRaisesRegex(
73 74 75 76 77 78
            AssertionError,
            (
                "Invalid equation: the number of operands is 1, "
                "but found 2 segments in the label equation."
            ),
        ):
79
            paddle.einsum('i, -> k', a)
80
        with self.assertRaisesRegex(
81 82 83
            AssertionError,
            ("Invalid equation: the label string '' misses dimensions."),
        ):
84
            paddle.einsum('->', a)
85
        with self.assertRaisesRegex(
86 87 88
            AssertionError,
            ("Invalid equation: the label string 'i' misses dimensions."),
        ):
89
            paddle.einsum('i', a)
90
        with self.assertRaisesRegex(
91 92 93 94 95 96
            AssertionError,
            (
                "Invalid equation: _ is not a valid label, "
                "which should be letters."
            ),
        ):
97
            paddle.einsum('i_', a)
98
        with self.assertRaisesRegex(
99 100 101
            AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis."),
        ):
102
            paddle.einsum('i..j', a)
103
        with self.assertRaisesRegex(
104 105 106
            AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis."),
        ):
107
            paddle.einsum('...k...', a)
108
        with self.assertRaisesRegex(
109 110 111
            AssertionError,
            ("Invalid equation: missing ellipsis in output labels."),
        ):
112
            paddle.einsum('i...->i', a)
113
        with self.assertRaisesRegex(
114 115 116 117 118 119
            AssertionError,
            (
                "Invalid operands: label i "
                "corresponds to non-broadcastable dimensions."
            ),
        ):
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            error_trans(paddle.einsum, 'ij...,ji...', a, a)


class TestEinsum(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        np.random.seed(12345)

        cls.TEST_SAMPLES = {
            "a": np.random.rand(1, 1),
            "b": np.random.rand(1),
            "x": np.random.rand(5),
            "y": np.random.rand(7),
            "A": np.random.rand(4, 5),
            "B": np.random.rand(2, 5),
            "C": np.random.rand(3, 7),
            "D": np.random.rand(3, 4, 5),
            "E": np.random.rand(3, 5, 2),
            "F": np.random.rand(2, 4, 5, 3),
            "G": np.random.rand(4, 2, 5),
            "H": np.random.rand(3, 2, 4),
            "I": np.random.rand(2, 2),
            "J": np.random.rand(1, 3, 5),
            "K": np.random.rand(1, 2, 3, 4),
144 145 146 147 148 149 150
            "X": np.random.rand(5, 5),
            "L": np.random.rand(5, 10, 5),
            "M": np.random.rand(5, 3, 2, 1, 4, 5),
            "N": np.random.rand(5, 5, 5),
            "O": np.random.rand(3, 5, 7, 3),
            "P": np.random.rand(5, 7, 5, 7),
            "S": np.random.rand(4, 3, 4, 4),
151 152 153 154 155 156 157 158 159 160
        }

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

161
    def check_output_equal(self, actual, expect, rtol=1.0e-5, atol=1.0e-8):
162
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
163 164 165 166 167 168 169 170 171
        np.testing.assert_allclose(
            actual,
            expect,
            rtol=rtol,
            atol=atol,
            err_msg=error_msg.format(
                paddle.get_device(), expect, actual, self.__class__.__name__
            ),
        )
172 173 174 175 176 177 178 179 180 181 182 183

    def setUp(self):
        self.sample = {"paradigm": "i->", "data": ["x"]}

    def test_forward(self):
        operands = [
            TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"]
        ]
        expected_result = np.einsum(self.sample["paradigm"], *operands)
        equation = self.sample["paradigm"]

        with paddle.fluid.dygraph.guard(
184 185
            self._get_place(force_to_use_cpu=False)
        ):
186 187 188 189 190 191 192 193 194 195
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)

        with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class TestEinsumTraceDiag1(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ii->", "data": ["X"]}


class TestEinsumTraceDiag2(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "iji->j", "data": ["L"]}


class TestEinsumTraceDiag3(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "a...a->...", "data": ["M"]}


class TestEinsumTraceDiag4(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "a...a->a...", "data": ["M"]}


class TestEinsumTraceDiag5(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "aaa->a", "data": ["N"]}


# Numpy don't support i->ii, but paddle.einsum support.
# class TestEinsumTraceDiag6(TestEinsum):
# def setUp(self):
# self.sample = {"paradigm": "i->iii", "data": ["x"]}

# class TestEinsumTraceDiag7(TestEinsum):
# def setUp(self):
# self.sample = {"paradigm": "i...->i...i", "data": ["S"]}


class TestEinsumTraceDiag2Ops(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijki,jkjk->ik", "data": ["O", "P"]}


class TestEinsumIdentity(TestEinsum):
237
    def setUp(self):
238
        self.sample = {"paradigm": "...->...", "data": ["N"]}
239 240


241
class TestEinsumElementwiseProduct(TestEinsum):
242
    def setUp(self):
243
        self.sample = {"paradigm": "...,...->...", "data": ["N", "N"]}
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377


class TestEinsumVectorOuter(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]}


class TestEinsumMatrixTranspose(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij->ji", "data": ["A"]}


class TestEinsumMatrixRowSum(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij->j", "data": ["A"]}


class TestEinsumMatrixColSum(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij->i", "data": ["A"]}


class TestEinsumMatrixEleMul(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]}


class TestEinsumDegenerateMatrixVecMul(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,j", "data": ["a", "b"]}


class TestEinsumMatrixVecMul(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]}


class TestEinsumMatrixMul(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]}


class TestEinsumMatrixOuter(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]}


class TestEinsumTensorBMM(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]}


class TestEinsumTensorContract1(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]}


class TestEinsumTensorContract2(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]}


class TestEinsumTensorContract3(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]}


class TestEinsumTensorContract4(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]}


class TestEinsumTensorContract5(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]}


class TestEinsumTensorContract6(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]}


class TestEinsumTensorContract7(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]}


class TestEinsumEllipsis1(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "i...->...", "data": ["G"]}


class TestEinsumEllipsis2(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]}


class TestEinsumEllipsis3(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]}


class TestEinsumTestEinsumBilinear(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]}


class TestEinsumTestEinsumOthers1(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]}


class TestEinsumTestEinsumOthers2(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]}


class TestEinsumBatch1(TestEinsum):
    def setUp(self):
        self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]}


class TestNumpyTests(unittest.TestCase):
    def setUp(self):
        pass

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

378
    def check_output_equal(self, actual, expect, rtol=1.0e-5, atol=1.0e-8):
379
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
380 381 382 383 384 385 386 387 388
        np.testing.assert_allclose(
            actual,
            expect,
            rtol=rtol,
            atol=atol,
            err_msg=error_msg.format(
                paddle.get_device(), expect, actual, self.__class__.__name__
            ),
        )
389 390 391 392

    def check_output(self, eqn, *ops):
        expect = np.einsum(eqn, *ops)
        with paddle.fluid.dygraph.guard(
393 394
            self._get_place(force_to_use_cpu=False)
        ):
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            pd_operands = [paddle.to_tensor(op) for op in ops]
            actual = paddle.einsum(eqn, *pd_operands)
            self.check_output_equal(actual.numpy(), expect)

    def test_sums(self):
        for n in range(1, 17):
            a = np.arange(n).astype('float')
            self.check_output("i->", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("...i->...", a)

        for n in range(1, 17):
            a = np.arange(2 * n).reshape(2, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(3 * n).reshape(3, n).astype('float')
            b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("..., ...", a, b)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("...i, ...i", a, b)

        for n in range(1, 11):
            a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("i..., i...", a, b)

        for n in range(1, 17):
            a = (np.arange(3) + 1).astype('float')
            b = (np.arange(n) + 1).astype('float')
            self.check_output("i,j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ij, j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ji,j", a.T, b.T)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n * 6).reshape(n, 6).astype('float')
            self.check_output("ij,jk", a, b)

        a = np.arange(12).reshape(3, 4).astype('float')
        b = np.arange(20).reshape(4, 5).astype('float')
        c = np.arange(30).reshape(5, 6).astype('float')
        self.check_output("ij,jk,kl", a, b, c)

        a = np.arange(60).reshape(3, 4, 5).astype('float')
        b = np.arange(24).reshape(4, 3, 2).astype('float')
        self.check_output("ijk, jil -> kl", a, b)

        for n in range(1, 25):
            a = np.arange(n).astype('float')
            self.check_output("...,...", a, a)
            self.check_output("i,i", a, a)

        x = np.eye(2).astype('float')
        y = np.ones(2).astype('float')
        self.check_output("ji,i->", x, y)
        self.check_output("i,ij->", y, x)
        self.check_output("ij,i->", x, y)

    def test_static_graph(self):
        paddle.enable_static()
        fluid = paddle.fluid
        if fluid.core.is_compiled_with_cuda():
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CPUPlace()
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            a = paddle.static.data(
                name='a', shape=[3, None, None, None], dtype='float'
            )
            b = paddle.static.data(
                name='b', shape=[2, None, None, None], dtype='float'
            )
            c = paddle.static.data(
                name='c', shape=[None, None, 2, None], dtype='float'
            )
            d = paddle.static.data(
                name='d', shape=[None, None, 5], dtype='float'
            )
            e = paddle.static.data(
                name='e', shape=[None, 2, None], dtype='float'
            )
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

            outs = []
            outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b))
            outs.append(paddle.einsum('...ik, ...j', c, d))
            outs.append(paddle.einsum('...kj, ...ik', d, e))
            outs.append(paddle.einsum('ijk..., ikj', c, e))
            outs.append(paddle.einsum('ijk..., ikj->...ij', c, e))
        exe = fluid.Executor(self.place)
        exe.run(startup)
        a = np.arange(72).reshape(3, 2, 3, 4).astype('float')
        b = np.arange(48).reshape(2, 2, 3, 4).astype('float')
        c = np.arange(48).reshape(2, 3, 2, 4).astype('float')
        d = np.arange(30).reshape(2, 3, 5).astype('float')
        e = np.arange(12).reshape(2, 2, 3).astype('float')
        feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e}
        actual = exe.run(main, feed=feeds, fetch_list=[outs])
        expect = []
        expect.append(np.einsum("ibnd,jbnd->bnij", a, b))
        expect.append(np.einsum('...ik, ...j', c, d))
        expect.append(np.einsum('...kj, ...ik', d, e))
        expect.append(np.einsum('ijk..., ikj', c, e))
        expect.append(np.einsum('ijk..., ikj->...ij', c, e))
        for a, e in zip(actual, expect):
            self.check_output_equal(a, e)


522 523 524 525 526 527 528 529 530 531 532 533 534 535
class TestStaticGraphShape(unittest.TestCase):
    def setUp(self):
        paddle.enable_static()

    def tearDown(self):
        paddle.disable_static()

    def test_shape(self):
        A = paddle.static.data(name='x', shape=[-1])
        B = paddle.static.data(name='y', shape=[384])
        C = paddle.einsum('i,d->id', A, B)
        self.assertEqual(C.shape, (-1, 384))


536 537 538 539 540
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
541 542 543 544 545 546
class TestBF16(unittest.TestCase):
    """
    EinsumOp support bfloat16 type, add unittest here for the correctness.
    """

    def test_shape(self):
L
Leo Chen 已提交
547 548
        cuda_major = paddle.version.cuda().split('.')[0].strip()
        if int(cuda_major) >= 11:
549
            """MatmulKernel support bfloat16 only if cuda_major > 11.0."""
550 551 552 553 554
            A = paddle.to_tensor(np.array([1.0, 2.0])).astype(paddle.bfloat16)
            A = A.cuda()
            B = paddle.to_tensor(np.array([2.0, 3.0])).astype(paddle.bfloat16)
            B = B.cuda()
            C = paddle.einsum('i,i->', A, B)
L
Leo Chen 已提交
555 556
            D = paddle.to_tensor(8.0).astype(paddle.bfloat16)
            self.assertEqual(C.item(), D.item())
557 558


X
xiongkun 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572
class TestComplex(unittest.TestCase):
    """
    EinsumOp support Complex type
    """

    def test_shape(self):
        a = paddle.rand([4, 4])
        b = paddle.rand([4, 4])
        c = paddle.einsum('xy,yz->xz', a, b)
        a = paddle.cast(a, 'complex64')
        b = paddle.cast(b, 'complex64')
        c = paddle.einsum('xy,yz->xz', a, b)


573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
class TestSimpleUndiagonal(unittest.TestCase):
    """
    EinsumOp support undiagonalize.
    """

    def test_shape(self):
        paddle.disable_static()
        A = paddle.to_tensor(np.array([1.0, 2.0]))
        A_expect = paddle.to_tensor([[1.0, 0.0], [0.0, 2.0]])
        A_actual = paddle.einsum('i->ii', A)
        np.array_equal(A_expect.numpy(), A_actual.numpy())


class TestSimpleUndiagonal2(unittest.TestCase):
    """
    EinsumOp support undiagonalize.
    """

    def test_shape(self):
        paddle.disable_static()
        A = paddle.to_tensor(np.array([1.0, 2.0]))
        B = paddle.to_tensor(np.array([1.0, 1.0]))
        A_expect = paddle.to_tensor([[2.0, 0.0], [0.0, 4.0]])
        A_actual = paddle.einsum('i,j->ii', A, B)
        np.array_equal(A_expect.numpy(), A_actual.numpy())


600
if __name__ == "__main__":
601
    unittest.main()