data_sources.py 7.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Data Sources are helpers to define paddle training data or testing data.
"""
from paddle.trainer.config_parser import *
from .utils import deprecated

try:
    import cPickle as pickle
except ImportError:
    import pickle

L
Luo Tao 已提交
25
__all__ = ['define_py_data_sources2']
Z
zhangjinchao01 已提交
26 27


Q
qijun 已提交
28 29 30 31 32 33
def define_py_data_source(file_list,
                          cls,
                          module,
                          obj,
                          args=None,
                          async=False,
Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
                          data_cls=PyData):
    """
    Define a python data source.

    For example, the simplest usage in trainer_config.py as follow:

    ..  code-block:: python

        define_py_data_source("train.list", TrainData, "data_provider", "process")

    Or. if you want to pass arguments from trainer_config to data_provider.py, then

    ..  code-block:: python

        define_py_data_source("train.list", TrainData, "data_provider", "process",
                              args={"dictionary": dict_name})

    :param data_cls:
L
Luo Tao 已提交
52
    :param file_list: file list name, which contains all data file paths
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    :type file_list: basestring
    :param cls: Train or Test Class.
    :type cls: TrainData or TestData
    :param module: python module name.
    :type module: basestring
    :param obj: python object name. May be a function name if using
                PyDataProviderWrapper.
    :type obj: basestring
    :param args: The best practice is using dict to pass arguments into 
                 DataProvider, and use :code:`@init_hook_wrapper` to 
                 receive arguments.
    :type args: string or picklable object
    :param async: Load Data asynchronously or not.
    :type async: bool
    :return: None
    :rtype: None
    """
    if isinstance(file_list, list):
        file_list_name = 'train.list'
        if isinstance(cls, TestData):
            file_list_name = 'test.list'
74
        with open(file_list_name, 'w') as f:
Z
zhangjinchao01 已提交
75 76 77 78 79 80 81
            f.writelines(file_list)
        file_list = file_list_name

    if not isinstance(args, basestring) and args is not None:
        args = pickle.dumps(args, 0)

    if data_cls is None:
Q
qijun 已提交
82

Z
zhangjinchao01 已提交
83
        def py_data2(files, load_data_module, load_data_object, load_data_args,
Q
qijun 已提交
84
                     **kwargs):
Z
zhangjinchao01 已提交
85 86 87 88 89 90
            data = DataBase()
            data.type = 'py2'
            data.files = files
            data.load_data_module = load_data_module
            data.load_data_object = load_data_object
            data.load_data_args = load_data_args
91
            data.async_load_data = True
Z
zhangjinchao01 已提交
92 93
            return data

Q
qijun 已提交
94
        data_cls = py_data2
Z
zhangjinchao01 已提交
95

Q
qijun 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    cls(
        data_cls(
            files=file_list,
            load_data_module=module,
            load_data_object=obj,
            load_data_args=args,
            async_load_data=async))


def define_py_data_sources(train_list,
                           test_list,
                           module,
                           obj,
                           args=None,
                           train_async=False,
                           data_cls=PyData):
Z
zhangjinchao01 已提交
112
    """
L
Luo Tao 已提交
113 114
    The annotation is almost the same as define_py_data_sources2, except that
    it can specific train_async and data_cls.
Z
zhangjinchao01 已提交
115

L
Luo Tao 已提交
116
    :param data_cls: 
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    :param train_list: Train list name.
    :type train_list: basestring
    :param test_list: Test list name.
    :type test_list: basestring
    :param module: python module name. If train and test is different, then
                   pass a tuple or list to this argument.
    :type module: basestring or tuple or list
    :param obj: python object name. May be a function name if using
                PyDataProviderWrapper. If train and test is different, then pass
                a tuple or list to this argument.
    :type obj: basestring or tuple or list
    :param args: The best practice is using dict() to pass arguments into
                 DataProvider, and use :code:`@init_hook_wrapper` to receive 
                 arguments. If train and test is different, then pass a tuple 
                 or list to this argument.
    :type args: string or picklable object or list or tuple.
    :param train_async: Is training data load asynchronously or not.
    :type train_async: bool
    :return: None
    :rtype: None
    """

    def __is_splitable__(o):
Q
qijun 已提交
140 141
        return (isinstance(o, list) or
                isinstance(o, tuple)) and hasattr(o, '__len__') and len(o) == 2
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153

    assert train_list is not None or test_list is not None
    assert module is not None and obj is not None

    test_module = module
    train_module = module
    if __is_splitable__(module):
        train_module, test_module = module

    test_obj = obj
    train_obj = obj
    if __is_splitable__(obj):
154
        train_obj, test_obj = obj
Z
zhangjinchao01 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    if args is None:
        args = ""

    train_args = args
    test_args = args
    if __is_splitable__(args):
        train_args, test_args = args

    if train_list is not None:
        define_py_data_source(train_list, TrainData, train_module, train_obj,
                              train_args, train_async, data_cls)

    if test_list is not None:
        define_py_data_source(test_list, TestData, test_module, test_obj,
                              test_args, False, data_cls)


def define_py_data_sources2(train_list, test_list, module, obj, args=None):
L
Luo Tao 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    """
    Define python Train/Test data sources in one method. If train/test use
    the same Data Provider configuration, module/obj/args contain one argument,
    otherwise contain a list or tuple of arguments. For example\:

    ..  code-block:: python

        define_py_data_sources2(train_list="train.list", 
                                test_list="test.list", 
                                module="data_provider"
                                # if train/test use different configurations,
                                # obj=["process_train", "process_test"]
                                obj="process", 
                                args={"dictionary": dict_name})

    The related data provider can refer to 
    `here <../../data_provider/pydataprovider2.html#dataprovider-for-the-sequential-model>`__.

    :param train_list: Train list name.
    :type train_list: basestring
    :param test_list: Test list name.
    :type test_list: basestring
    :param module: python module name. If train and test is different, then
                   pass a tuple or list to this argument.
    :type module: basestring or tuple or list
    :param obj: python object name. May be a function name if using
                PyDataProviderWrapper. If train and test is different, then pass
                a tuple or list to this argument.
    :type obj: basestring or tuple or list
    :param args: The best practice is using dict() to pass arguments into
                 DataProvider, and use :code:`@init_hook_wrapper` to receive 
                 arguments. If train and test is different, then pass a tuple 
                 or list to this argument.
    :type args: string or picklable object or list or tuple.
    :return: None
    :rtype: None
    """
Q
qijun 已提交
211 212 213 214 215 216 217
    define_py_data_sources(
        train_list=train_list,
        test_list=test_list,
        module=module,
        obj=obj,
        args=args,
        data_cls=None)