ascend_optimizer.py 6.5 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
import ascend_parser


class AscendIRParser(object):
    def __init__(self):
        self.graph_idx = 0

    def _construct_input_map(self, input_varlist):
        ret_map = {}
        ge_in_operator = []
        for id, var in enumerate(input_varlist):
            if var.is_data:  # input data
                ge_input = core.GEOperatorFactory.create_operator(
                    var.name, "Data").set_attr_int32("index", id)
                ret_map[var.name] = ge_input
                ge_in_operator.append(ge_input)
            else:  # param, learning ...
                ge_input = core.GEOperatorFactory.create_operator(var.name,
                                                                  "Variable")
                ge_input.update_output_desc("y",
                                            core.GETensorDesc(
                                                core.GEShape(var.shape),
                                                core.GEFormat.FORMAT_ND,
                                                core.GEDataType.DT_FLOAT))
                ret_map[var.name] = ge_input
        return ge_in_operator, ret_map

    def parse_op(self, op):
        if op.type in ascend_parser.registerd_op:
            print("Op[%s] has been registered, begin to parse it" % (op.type))
            op_parser = self.parser_factory.create_parse(
                ascend_parser.registerd_op[op.type])
            op_parser.apply(op)
        else:
            print("Op[%s] has not been registered, so we have to skip it" %
                  (op.type))

    def _parse_program(self,
                       graph_name,
                       program,
                       input_varlist=[],
                       fetch_list=[]):
        begin_graph_idx = self.graph_idx
        ge_in_operator = []
        ge_out_operator = []
        self.var2geop = {}

        block = program.global_block()
        if len(block.ops) == 0:
            print("There is no ops in program %s" % (graph_name))
            return []

        graph = core.GEGraph(graph_name)

        ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)

        self.parser_factory = ascend_parser.AscendParserFactory(graph,
                                                                self.var2geop)
        for i, curop in list(enumerate(block.ops)):
            self.parse_op(curop)

        # Set fetch_var for GE
        for e in fetch_list:
            name = e
            if not isinstance(e, str):
                name = e.name
            ge_out_operator.append(self.var2geop[name])

        # (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as: 
        # if graph_name == "main":
        #     ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])

        # Add ops that may be input of a graph, such as const.
        for varname, geop in self.var2geop.items():
            if varname.startswith("geinput"):
                ge_in_operator.append(geop)

        graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)

        # Remove ops of origin program
        op_num = len(block.ops)
        for i in range(op_num - 1, -1, -1):
            block._remove_op(i)

        input_varlist = [var for var in input_varlist if var.is_data]

        block.append_op(
            type="ascend_trigger",
            inputs={"FeedList": input_varlist},
            outputs={"FetchList": fetch_list},
            attrs={'graph_idx': self.graph_idx})
        self.graph_idx += 1
        return graph

    def parse_program(self, startup_program, main_program, input_varlist,
                      fetch_list):
        startup_graph = self._parse_program("startup", startup_program)
        main_graph = self._parse_program("main", main_program, input_varlist,
                                         fetch_list)
        return startup_graph, main_graph


# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class AscendOptimizer(Optimizer):
    def __init__(self, optimizer, fetch_list=[]):
        self.inner_opt = optimizer
        self.fetch_list = fetch_list

    def __del__(self):
        core.ge_finalize()

    def _can_apply(self):
        if not self.user_defined_strategy.ascend:
            return False
        # TODO(hutuxian): other check here
        return True

    def _disable_strategy(self, dist_strategy):
        dist_strategy.ascend = False
        dist_strategy.ascend_configs = {}

    def _get_input_varlist(program):
        ret_list = []
        for var in program.list_vars():
            if var.is_data or var.persistable:
                ret_list.append(var)
        return ret_list

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        minimized = self.inner_opt.minimize(
            loss, startup_program=startup_program)

        self.ascend_instance = core.AscendInstance()

        # Config about Graph Engine can be found in https://support.huaweicloud.com/
        config = {
            "ge.exec.deviceId": "0",
            "ge.graphRunMode": "1",
            "ge.exec.precision_mode": "must_keep_origin_dtype"
        }
        core.ge_initialize(config)

        # Init Session
        self.ascend_instance.init_global_resources()

        main_block = loss.block
        self.parser = AscendIRParser()

        input_varlist = _get_input_varlist(main_block.program)
        startup_graph, main_graph = self.parser.parse_program(
            startup_program, main_block.program, input_varlist, self.fetch_list)

        self.ascend_instance.add_ascend_subgraph(0, startup_graph)
        self.ascend_instance.add_ascend_subgraph(1, main_graph)

        return minimized