op_test.py 19.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
import random
M
minqiyang 已提交
18
import six
19
import time
20
import itertools
Y
Yu Yang 已提交
21
import collections
22 23 24

import paddle.fluid as fluid
import paddle.fluid.core as core
25 26 27
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
28
from paddle.fluid.framework import Program, OpProtoHolder, Variable
29
from testsuite import create_op, set_input, append_input_output, append_loss_ops
30 31


32 33 34 35
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
36
    for i in six.moves.xrange(len(prob)):
37 38 39 40
        prob[i] /= prob_sum[i]
    return prob


41 42
def get_numeric_gradient(place,
                         scope,
43 44 45
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
46
                         output_names,
47 48
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
49
    # FIXME: change this method by compile time concepts
50
    set_input(scope, op, inputs, place)
51 52

    def product(dim):
M
minqiyang 已提交
53
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
54 55

    def get_output():
Y
Yu Yang 已提交
56
        sum = []
Y
Yancey 已提交
57
        for output_name in output_names:
58
            op.run(scope, place)
Y
Yu Yang 已提交
59 60 61
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
62 63

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
64 65
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
66
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
67
        tensor_to_check_dtype = np.float32
68
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
69
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
70 71 72 73
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
74 75 76 77 78 79 80
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
81 82 83 84 85
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
86
            return tensor._get_float_element(i)
87
        else:
Y
yuyang18 已提交
88
            return tensor._get_double_element(i)
89 90

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
91 92 93 94 95 96 97 98
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
            numpy_tensor = numpy_tensor.reshape(shape).view(np.uint16)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
99
            tensor._set_float_element(i, e)
100
        else:
Y
yuyang18 已提交
101
            tensor._set_double_element(i, e)
102

103 104
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
105
    for i in six.moves.xrange(tensor_size):
106
        if in_place:
107
            set_input(scope, op, inputs, place)
108 109

        # get one input element throw it's index i.
110
        origin = __get_elem__(tensor_to_check, i)
111 112
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
113
        __set_elem__(tensor_to_check, i, x_pos)
114 115 116
        y_pos = get_output()

        if in_place:
117
            set_input(scope, op, inputs, place)
118 119

        x_neg = origin - delta
120
        __set_elem__(tensor_to_check, i, x_neg)
121 122
        y_neg = get_output()

123
        __set_elem__(tensor_to_check, i, origin)
124 125
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
126
    return gradient_flat.reshape(tensor_to_check.shape())
127 128 129


class OpTest(unittest.TestCase):
130 131 132 133 134
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
135 136 137
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
138 139 140 141 142 143

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
144
        """Restore random seeds"""
145 146 147
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

148 149 150 151
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type
D
dzhwinter 已提交
152 153 154 155 156
            # See the comment of np_dtype_to_fluid_dtype
            # If the input type is uint16, we assume use float16
            # for lodtensor dtype.
            if self.dtype == np.uint16:
                self.dtype == np.float16
157 158 159 160 161 162

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
163
            for var_name, var_value in six.iteritems(numpy_dict):
164 165 166 167 168 169 170 171 172 173 174 175 176 177
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
178 179 180 181 182 183
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
184
                    if isinstance(np_value, tuple):
D
dzhwinter 已提交
185 186
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value[0]), place)
187
                        tensor.set_recursive_sequence_lengths(np_value[1])
188
                    else:
D
dzhwinter 已提交
189 190
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value), place)
Y
Yang Yang(Tony) 已提交
191 192 193 194
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
D
dzhwinter 已提交
195 196 197
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name][
                            0]), place)
198 199
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
200
                else:
D
dzhwinter 已提交
201 202 203
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name]),
                        place)
Y
Yang Yang(Tony) 已提交
204 205 206 207
                feed_map[var_name] = tensor

        return feed_map

208
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
209
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
210 211 212 213 214 215
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
Y
Yang Yang(Tony) 已提交
216 217 218 219 220
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
221 222 223
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
224

225 226
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
227
        for name, value in six.iteritems(numpy_inputs):
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

    def _calc_output(self, place, parallel=False):

        program = Program()
        block = program.global_block()
        self._append_ops(block)

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(
                use_cuda=use_cuda, loss_name=loss.name, main_program=program)
        else:
            executor = Executor(place)

        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
270
            for var_name, var in six.iteritems(outputs):
Y
Yang Yang(Tony) 已提交
271 272 273 274 275
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)
276 277 278 279 280
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
        # fetch_list = map(block.var, fetch_list)
W
Wu Yi 已提交
281
        if not isinstance(fetch_list[0], fluid.framework.Variable):
282
            fetch_list = list(map(block.var, fetch_list))
283 284 285 286
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
287
        return outs, fetch_list
Y
Yang Yang(Tony) 已提交
288

289 290
    def check_output_with_place(self, place, atol):
        outs, fetch_list = self._calc_output(place)
Y
Yang Yang(Tony) 已提交
291
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
292 293 294
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
295 296 297 298 299 300 301 302 303 304
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

305 306
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
307 308 309
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
310 311
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
Y
Yang Yang(Tony) 已提交
312
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
313 314
                    actual = outs[idx]
                    actual_t = np.array(actual)
315 316
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
317 318
                    self.assertTrue(
                        np.allclose(
319
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
320 321
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
322 323
                    if isinstance(expect, tuple):
                        self.assertListEqual(
324 325
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
326
                            ") has different lod at " + str(place))
327
            else:
Y
Yang Yang(Tony) 已提交
328
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
329 330
                actual = outs[idx]
                actual_t = np.array(actual)
331
                expect = self.outputs[out_name]
332
                expect_t = expect[0] if isinstance(expect, tuple) else expect
333 334
                self.assertTrue(
                    np.allclose(
335
                        actual_t, expect_t, atol=atol),
E
emailweixu 已提交
336
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
337 338
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
                    str(actual_t))
339
                if isinstance(expect, tuple):
340 341
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
342
                                         ") has different lod at " + str(place))
343

344
    def _get_places(self):
D
dzhwinter 已提交
345 346 347 348 349 350 351 352
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
            else:
                return []
353
        places = [fluid.CPUPlace()]
354
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
355
            places.append(core.CUDAPlace(0))
356 357 358 359
        return places

    def check_output(self, atol=1e-5):
        places = self._get_places()
Q
qijun 已提交
360
        for place in places:
361
            self.check_output_with_place(place, atol)
Q
qijun 已提交
362

363
    def check_output_customized(self, checker):
364
        places = self._get_places()
365 366 367 368 369
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
            checker(outs)

370 371 372
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

M
minqiyang 已提交
373
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
374 375 376 377 378 379 380 381
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
382
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
383 384 385
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
386 387 388 389 390

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
391
                   output_names,
392
                   no_grad_set=None,
393
                   numeric_grad_delta=0.005,
394
                   in_place=False,
Q
Qiao Longfei 已提交
395 396
                   max_relative_error=0.005,
                   user_defined_grads=None):
397
        places = self._get_places()
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
                                       user_defined_grads)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None):
413
        self.scope = core.Scope()
Q
qijun 已提交
414
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
415
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
416
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
417
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
418
                            op_attrs)
Y
Yu Yang 已提交
419

420 421 422
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
423 424 425
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
426
        numeric_grads = user_defined_grads or [
427
            get_numeric_gradient(
428
                place,
429 430 431 432
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
433
                output_names,
434
                delta=numeric_grad_delta,
435 436
                in_place=in_place) for input_to_check in inputs_to_check
        ]
437 438 439 440 441 442
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

        self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                               max_relative_error,
                               "Gradient Check On %s" % str(place))
Q
qijun 已提交
443

Y
Yu Yang 已提交
444 445 446 447 448
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
449
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
450 451
        return tensor

K
Kexin Zhao 已提交
452
    @staticmethod
K
Kexin Zhao 已提交
453 454
    def np_dtype_to_fluid_dtype(input):
        """Change the dtype of float16 numpy array
K
Kexin Zhao 已提交
455

456
        numpy float16 is binded to paddle::platform::float16
K
Kexin Zhao 已提交
457
        in tensor_py.h via the help of uint16 data type since
458
        the internal memory representation of float16 is
K
Kexin Zhao 已提交
459 460
        uint16_t in paddle and np.uint16 in numpy, which are
        themselves binded together by pybind.
K
Kexin Zhao 已提交
461 462 463 464 465

        Args:
            input: input numpy array

        Returns:
466
            input: The dtype of input will be changed to np.uint16 if
K
Kexin Zhao 已提交
467
                it is originally np.float16, such that the internal memory
468
                of input will be reinterpreted as of dtype np.uint16.
K
Kexin Zhao 已提交
469 470
        """
        if input.dtype == np.float16:
K
Kexin Zhao 已提交
471 472
            input.dtype = np.uint16
        return input
K
Kexin Zhao 已提交
473

D
dzhwinter 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        """
        See above, convert the dtype to normal type.
        """
        if dtype == np.uint16:
            dtype = np.float16
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        if input.dtype == np.float16:
            input = input.view(np.uint16)
        return input

489 490 491 492 493 494
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
495 496
        prog = Program()
        block = prog.global_block()
497 498
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
499
        param_grad_list = append_backward(
Y
Yu Yang 已提交
500 501
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

502 503
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
504 505

        fetch_list = [g for p, g in param_grad_list]
506 507 508 509 510
        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(
D
dzhwinter 已提交
511
                use_cuda=use_cuda, loss_name=loss.name, main_program=prog)
512 513
        else:
            executor = Executor(place)
514 515 516
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))