nll_loss_op.cu 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
G
Guo Sheng 已提交
12
#include <functional>
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <string>
#include "cub/cub.cuh"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/operators/nll_loss_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/hostdevice.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;
static const int NTHREADS = 32;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T>
__global__ void GPUNLLLossForward1D_no_reduce(T* out_data, const T* x_data,
                                              const int64_t* label_data,
                                              const T* weight_data,
                                              const int64_t batch_size,
                                              const int64_t n_classes,
                                              const int64_t ignore_index) {
41
  CUDA_KERNEL_LOOP(i, batch_size) {
42 43 44 45 46
    const int64_t cur_label = label_data[i];
    if (cur_label == ignore_index) {
      out_data[i] = 0;
      continue;
    }
47 48
    PADDLE_ENFORCE(cur_label >= 0 && cur_label < n_classes,
                   "label should not be out of bounds.");
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
    out_data[i] = -x_data[i * n_classes + cur_label] * cur_weight;
  }
}

template <typename T>
__global__ void GPUNLLLossForward1D_with_reduce(
    T* out_data, T* total_weight_data, const T* x_data,
    const int64_t* label_data, const T* weight_data, const int64_t batch_size,
    const int64_t n_classes, const int64_t size_average,
    const int64_t ignore_index) {
  __shared__ T sharedInputs[NTHREADS], sharedWeights[NTHREADS];
  sharedInputs[threadIdx.x] = 0;
  sharedWeights[threadIdx.x] = 0;
  int i;
  for (i = threadIdx.x; i < batch_size; i += NTHREADS) {
    const auto cur_label = label_data[i];
    if (cur_label != ignore_index) {
67 68
      PADDLE_ENFORCE(cur_label >= 0 && cur_label < n_classes,
                     "label should not be out of bounds.");
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      const auto cur_weight = weight_data ? weight_data[cur_label] : (T)1;
      sharedInputs[threadIdx.x] -=
          x_data[i * n_classes + cur_label] * cur_weight;
      sharedWeights[threadIdx.x] += cur_weight;
    }
  }
  __syncthreads();

  if (threadIdx.x == 0) {
    *out_data = *total_weight_data = 0;
    T output_val = 0;
    T total_weight_val = 0;
    for (i = 0; i < NTHREADS; ++i) {
      output_val += sharedInputs[i];
      total_weight_val += sharedWeights[i];
    }
    *total_weight_data = total_weight_val;
    *out_data = output_val;

    if (size_average && *total_weight_data != 0) {
      *out_data = output_val / total_weight_val;
    }
  }
}

// Reduce N values concurrently, i.e. suppose N = 2, and there are 4 threads:
// (1, 2), (3, 4), (5, 6), (7, 8), then the return in threadVals for thread 0
// is (1 + 3 + 5 + 7, 2 + 4 + 6 + 8) = (16, 20)
//
// If smem is not used again, there is no need to __syncthreads before this
// call. However, if smem will be used, e.g., this function is called in a loop,
// then __syncthreads is needed either before or afterwards to prevent non-0
// threads overriding smem in the next loop before num-0 thread reads from it.
template <typename T, typename ReduceOp, int N>
__device__ void reduceNValuesInBlock(T* smem, T threadVals[N],
                                     const unsigned int numVals,
                                     ReduceOp reduceOp, T init) {
  if (numVals == 0) {
#pragma unroll
    for (int i = 0; i < N; ++i) {
      threadVals[i] = init;
    }
    return;
  }

  // We store each of the N values contiguously, so if N = 2, all values for
  // the first threadVal for each thread in the block are stored followed by
  // all of the values for the second threadVal for each thread in the block
  if (threadIdx.x < numVals) {
#pragma unroll
    for (int i = 0; i < N; ++i) {
      smem[i * numVals + threadIdx.x] = threadVals[i];
    }
  }
  __syncthreads();

  // Number of lanes in the final reduction --> this is used to determine
  // where to put the outputs of each of the n things we are reducing. If
  // nLP = 32, then we have the 32 outputs for the first threadVal,
  // followed by the 32 outputs for the second threadVal, etc.
  const unsigned int numLanesParticipating = min(numVals, warpSize);

  if (numVals > warpSize && ((threadIdx.x / warpSize) == 0)) {
#pragma unroll
    for (int i = 0; i < N; ++i) {
      threadVals[i] = threadIdx.x < numVals ? threadVals[i] : init;
    }

    for (int i = warpSize + threadIdx.x; i < numVals; i += warpSize) {
#pragma unroll
      for (int j = 0; j < N; ++j) {
        threadVals[j] = reduceOp(threadVals[j], smem[j * numVals + i]);
      }
    }

#pragma unroll
    for (int i = 0; i < N; ++i) {
      smem[i * numLanesParticipating + threadIdx.x] = threadVals[i];
    }
  }
  __syncthreads();

  if (threadIdx.x == 0) {
    if (numLanesParticipating == 32) {
#pragma unroll
      for (int i = 0; i < N; ++i) {
#pragma unroll
        for (int j = 1; j < 32; ++j) {
          threadVals[i] = reduceOp(threadVals[i], smem[i * 32 + j]);
        }
      }
    } else {
#pragma unroll
      for (int i = 0; i < N; ++i) {
        for (int j = 1; j < numLanesParticipating; ++j) {
          threadVals[i] = reduceOp(threadVals[i], smem[i * numVals + j]);
        }
      }
    }
  }
}

// Block-wide reduction in shared memory helper; only threadIdx.x == 0 will
// return the reduced value
//
// If smem is not used again, there is no need to __syncthreads before this
// call. However, if smem will be used, e.g., this function is called in a loop,
// then __syncthreads is needed either before or afterwards to prevent non-0
// threads overriding smem in the next loop before num-0 thread reads from it.
template <typename T, typename ReduceOp>
__device__ T reduceBlock(T* smem, const unsigned int numVals, T threadVal,
                         ReduceOp reduceOp, T init) {
  reduceNValuesInBlock<T, ReduceOp, 1>(smem, &threadVal, numVals, reduceOp,
                                       init);
  return threadVal;
}

template <typename T>
__global__ void GPUNLLLossForward2D_no_reduce(
    T* out_data, const T* x_data, const int64_t* label_data,
    const T* weight_data, const int64_t batch_size, const int64_t n_classes,
    const int64_t in_dim2, const int64_t in_dim3, const int64_t ignore_index) {
  const int64_t map_size = in_dim2 * in_dim3;
  const int64_t sample_size = n_classes * map_size;
  const int64_t out_numel = batch_size * map_size;
194
  CUDA_KERNEL_LOOP(i, out_numel) {
195 196 197 198 199 200 201 202 203 204
    const int64_t b = i % batch_size;
    const int64_t h = (i / batch_size) % in_dim2;
    const int64_t w = (i / (batch_size * in_dim2)) % in_dim3;

    const int64_t index = b * map_size + h * in_dim3 + w;
    const int64_t cur_label = label_data[index];
    if (cur_label == ignore_index) {
      out_data[index] = 0;
      continue;
    }
205 206
    PADDLE_ENFORCE(cur_label >= 0 && cur_label < n_classes,
                   "label should not be out of bounds.");
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
    out_data[index] =
        -x_data[b * sample_size + cur_label * map_size + h * in_dim3 + w] *
        cur_weight;
  }
}

template <typename T>
__global__ void GPUNLLLossForward2D_with_reduce(
    T* out_data, T* total_weight_data, const T* x_data,
    const int64_t* label_data, const T* weight_data, const int64_t batch_size,
    const int64_t n_classes, const int64_t map_nelem,
    const int64_t blocks_per_sample, const int64_t ignore_index) {
  __shared__ T partial_sums[kNumCUDAThreads];
  int64_t i;
  T input_sum = 0;
  T acc_weight = 0;
  *out_data = 0;
  *total_weight_data = 0;

  int64_t sample = blockIdx.x / blocks_per_sample;
  int64_t toffset = sample * map_nelem;
  int64_t ioffset = sample * map_nelem * n_classes;
  int64_t step = blockDim.x * blocks_per_sample;
  for (i = (blockIdx.x % blocks_per_sample) * blockDim.x + threadIdx.x;
       i < map_nelem; i += step) {
    const int64_t cur_label = label_data[toffset + i];
    if (cur_label != ignore_index) {
235 236
      PADDLE_ENFORCE(cur_label >= 0 && cur_label < n_classes,
                     "label should not be out of bounds.");
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
      input_sum -= x_data[ioffset + i + map_nelem * cur_label] * cur_weight;
      acc_weight += cur_weight;
    }
  }

  input_sum =
      reduceBlock(partial_sums, blockDim.x, input_sum, thrust::plus<T>(), (T)0);
  __syncthreads();
  acc_weight = reduceBlock(partial_sums, blockDim.x, acc_weight,
                           thrust::plus<T>(), (T)0);

  if (threadIdx.x == 0) {
    paddle::platform::CudaAtomicAdd(total_weight_data, acc_weight);
    paddle::platform::CudaAtomicAdd(out_data, input_sum);
  }
}

template <typename T>
__global__ void GPUNLLLossForward2D_size_average(T* out_data,
                                                 T* total_weight_data) {
  if (*total_weight_data != 0) {
    *out_data /= *total_weight_data;
  }
}

template <typename T>
__global__ void GPUNLLLossBackward1D_no_reduce(
    T* dx_data, const int64_t* label_data, const T* weight_data,
    const T* dout_data, const int64_t batch_size, const int64_t n_classes,
    const int64_t ignore_index) {
268
  CUDA_KERNEL_LOOP(i, batch_size) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    const int64_t cur_label = label_data[i];
    if (cur_label == ignore_index) {
      continue;
    }
    const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
    dx_data[i * n_classes + cur_label] = -dout_data[i] * cur_weight;
  }
}

template <typename T>
__global__ void GPUNLLLossBackward1D_with_reduce(
    T* dx_data, const T* total_weight_data, const int64_t* label_data,
    const T* weight_data, const T* dout_data, const int64_t batch_size,
    const int64_t n_classes, const int64_t size_average,
    const int64_t ignore_index) {
  if (*total_weight_data <= 0) {
    return;
  }
  int i;
  const T norm = size_average ? (T)(1 / *total_weight_data) : (T)1;
  for (i = threadIdx.x; i < batch_size; i += NTHREADS) {
    const int64_t cur_label = label_data[i];
    if (cur_label != ignore_index) {
      const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
      dx_data[i * n_classes + cur_label] = -cur_weight * dout_data[0] * norm;
    }
  }
}

template <typename T>
__global__ void GPUNLLLossBackward2D_no_reduce(
    T* dx_data, const int64_t* label_data, const T* weight_data,
    const T* dout_data, const int64_t batch_size, const int64_t n_classes,
    const int64_t in_dim2, const int64_t in_dim3, const int64_t ignore_index) {
  const int64_t map_size = in_dim2 * in_dim3;
  const int64_t sample_size = n_classes * map_size;
  const int64_t out_numel = batch_size * map_size;
306
  CUDA_KERNEL_LOOP(i, out_numel) {
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    const int64_t b = i % batch_size;
    const int64_t h = (i / batch_size) % in_dim2;
    const int64_t w = (i / (batch_size * in_dim2)) % in_dim3;
    const int64_t index = b * map_size + h * in_dim3 + w;
    const int64_t cur_label = label_data[index];
    if (cur_label == ignore_index) {
      continue;
    }
    const T cur_weight = weight_data ? weight_data[cur_label] : (T)1;
    dx_data[b * sample_size + cur_label * map_size + h * in_dim3 + w] =
        -dout_data[index] * cur_weight;
  }
}

template <typename T>
__global__ void GPUNLLLossBackward2D_with_reduce(
    T* dx_data, const T* total_weight_data, const int64_t* label_data,
    const T* weight_data, const T* dout_data, const int64_t batch_size,
    const int64_t n_classes, const int64_t map_nelem,
    const int64_t blocks_per_sample, const int64_t size_average,
    const int64_t ignore_index) {
  if (*total_weight_data <= 0) {
    return;
  }
  int64_t i;
  const T norm = size_average ? (T)(1 / *total_weight_data) : (T)1;
  int sample = blockIdx.x / blocks_per_sample;
  int step = blockDim.x * blocks_per_sample;
  int toffset = sample * map_nelem;
  int ioffset = sample * map_nelem * n_classes;
  for (i = (blockIdx.x % blocks_per_sample) * blockDim.x + threadIdx.x;
       i < map_nelem; i += step) {
    const int64_t cur_label = label_data[toffset + i];
    if (cur_label != ignore_index) {
      dx_data[ioffset + i + map_nelem * cur_label] =
          -(weight_data ? weight_data[cur_label] : (T)1) * norm * dout_data[0];
    }
  }
}

template <typename DeviceContext, typename T>
class NLLLossCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* out = ctx.Output<Tensor>("Out");
    auto* total_weight = ctx.Output<Tensor>("Total_weight");
    auto ignore_index = ctx.Attr<int64_t>("ignore_index");
    auto reduction = ctx.Attr<std::string>("reduction");

    auto x_data = x->data<T>();
    auto out_data = out->mutable_data<T>(ctx.GetPlace());
    auto total_weight_data = total_weight->mutable_data<T>(ctx.GetPlace());
    auto label_data = labels->data<int64_t>();
    auto weight_data = weight ? weight->data<T>() : nullptr;
    cudaMemset(total_weight_data, 0, sizeof(T));
    auto x_dims = x->dims();
    auto batch_size = x_dims[0];
    auto n_classes = x_dims[1];
    int64_t size_average = (int64_t)(reduction == "mean");

    if (x_dims.size() == 2) {
      int blocks = NumBlocks(batch_size);
      int threads = kNumCUDAThreads;
      auto& dev_ctx = ctx.cuda_device_context();
      if (reduction == "none") {
        GPUNLLLossForward1D_no_reduce<
            T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            out_data, x_data, label_data, weight_data, batch_size, n_classes,
            ignore_index);
      } else {
        GPUNLLLossForward1D_with_reduce<
            T><<<1, NTHREADS, 0, dev_ctx.stream()>>>(
            out_data, total_weight_data, x_data, label_data, weight_data,
            batch_size, n_classes, size_average, ignore_index);
      }
    } else if (x_dims.size() == 4) {
      const auto in_dim2 = x_dims[2];
      const auto in_dim3 = x_dims[3];
      const auto map_size = in_dim2 * in_dim3;
      const auto out_numel = batch_size * in_dim2 * in_dim3;
      int blocks = NumBlocks(out_numel);
      int threads = kNumCUDAThreads;
      auto& dev_ctx = ctx.cuda_device_context();
      if (reduction == "none") {
        GPUNLLLossForward2D_no_reduce<
            T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            out_data, x_data, label_data, weight_data, batch_size, n_classes,
            in_dim2, in_dim3, ignore_index);
      } else {
        int blocks_per_sample = NumBlocks(map_size) / 128;
        blocks_per_sample = (blocks_per_sample == 0) ? 1 : blocks_per_sample;
        int total_blocks = blocks_per_sample * batch_size;
        GPUNLLLossForward2D_with_reduce<
            T><<<total_blocks, threads, 0, dev_ctx.stream()>>>(
            out_data, total_weight_data, x_data, label_data, weight_data,
            batch_size, n_classes, map_size, blocks_per_sample, ignore_index);
        if (size_average) {
          GPUNLLLossForward2D_size_average<T><<<1, 1, 0, dev_ctx.stream()>>>(
              out_data, total_weight_data);
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class NLLLossGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* total_weight = ctx.Input<Tensor>("Total_weight");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto dout_data = dout->data<T>();
    auto label_data = labels->data<int64_t>();
    auto weight_data = weight ? weight->data<T>() : nullptr;
    auto total_weight_data = total_weight->data<T>();
    auto ignore_index = ctx.Attr<int64_t>("ignore_index");
    auto reduction = ctx.Attr<std::string>("reduction");
    cudaMemset(dx_data, 0, dx->numel() * sizeof(T));

    int64_t size_average = (int64_t)(reduction == "mean");
    auto x_dims = x->dims();
    auto batch_size = x_dims[0];
    auto n_classes = x_dims[1];

    if (x_dims.size() == 2) {
      int blocks = NumBlocks(batch_size);
      int threads = kNumCUDAThreads;
      auto& dev_ctx = ctx.cuda_device_context();
      if (reduction == "none") {
        GPUNLLLossBackward1D_no_reduce<
            T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            dx_data, label_data, weight_data, dout_data, batch_size, n_classes,
            ignore_index);
      } else {
        GPUNLLLossBackward1D_with_reduce<
            T><<<1, NTHREADS, 0, dev_ctx.stream()>>>(
            dx_data, total_weight_data, label_data, weight_data, dout_data,
            batch_size, n_classes, size_average, ignore_index);
      }
    } else if (x_dims.size() == 4) {
      const auto in_dim2 = x_dims[2];
      const auto in_dim3 = x_dims[3];
      const auto map_size = in_dim2 * in_dim3;
      const auto out_numel = batch_size * in_dim2 * in_dim3;

      int blocks = NumBlocks(out_numel);
      int threads = kNumCUDAThreads;
      auto& dev_ctx = ctx.cuda_device_context();
      if (reduction == "none") {
        GPUNLLLossBackward2D_no_reduce<
            T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            dx_data, label_data, weight_data, dout_data, batch_size, n_classes,
            in_dim2, in_dim3, ignore_index);
      } else {
        int blocks_per_sample = NumBlocks(map_size) / 128;
        blocks_per_sample = (blocks_per_sample == 0) ? 1 : blocks_per_sample;
        int total_blocks = blocks_per_sample * batch_size;
        GPUNLLLossBackward2D_with_reduce<
            T><<<total_blocks, threads, 0, dev_ctx.stream()>>>(
            dx_data, total_weight_data, label_data, weight_data, dout_data,
            batch_size, n_classes, map_size, blocks_per_sample, size_average,
            ignore_index);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    nll_loss,
    ops::NLLLossCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::NLLLossCUDAKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    nll_loss_grad,
    ops::NLLLossGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::NLLLossGradCUDAKernel<paddle::platform::CUDADeviceContext, double>);