test_strided_slice_op.py 31.3 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import numpy as np
import unittest
18
import paddle.fluid as fluid
19 20 21
import paddle

paddle.enable_static()
W
wangchaochaohu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


def strided_slice_native_forward(input, axes, starts, ends, strides):
    dim = input.ndim
    start = []
    end = []
    stride = []
    for i in range(dim):
        start.append(0)
        end.append(input.shape[i])
        stride.append(1)

    for i in range(len(axes)):
        start[axes[i]] = starts[i]
        end[axes[i]] = ends[i]
        stride[axes[i]] = strides[i]

    result = {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        1: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0]
        ],
        2: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0], start[1] : end[1] : stride[1]
        ],
        3: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0],
            start[1] : end[1] : stride[1],
            start[2] : end[2] : stride[2],
        ],
        4: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0],
            start[1] : end[1] : stride[1],
            start[2] : end[2] : stride[2],
            start[3] : end[3] : stride[3],
        ],
        5: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0],
            start[1] : end[1] : stride[1],
            start[2] : end[2] : stride[2],
            start[3] : end[3] : stride[3],
            start[4] : end[4] : stride[4],
        ],
        6: lambda input, start, end, stride: input[
            start[0] : end[0] : stride[0],
            start[1] : end[1] : stride[1],
            start[2] : end[2] : stride[2],
            start[3] : end[3] : stride[3],
            start[4] : end[4] : stride[4],
            start[5] : end[5] : stride[5],
        ],
W
wangchaochaohu 已提交
72 73 74 75 76 77 78 79 80
    }[dim](input, start, end, stride)

    return result


class TestStrideSliceOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'strided_slice'
81
        self.python_api = paddle.strided_slice
82 83 84
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
W
wangchaochaohu 已提交
85 86 87 88 89 90 91

        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
92
            'strides': self.strides,
93
            'infer_flags': self.infer_flags,
W
wangchaochaohu 已提交
94 95 96
        }

    def test_check_output(self):
97
        self.check_output(check_eager=True)
W
wangchaochaohu 已提交
98 99

    def test_check_grad(self):
100
        self.check_grad(set(['Input']), 'Out', check_eager=True)
W
wangchaochaohu 已提交
101 102

    def initTestCase(self):
103
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
104 105 106 107
        self.axes = [0]
        self.starts = [-4]
        self.ends = [-3]
        self.strides = [1]
108
        self.infer_flags = [1]
W
wangchaochaohu 已提交
109 110 111 112


class TestStrideSliceOp1(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
113
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
114 115 116 117
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
118
        self.infer_flags = [1]
W
wangchaochaohu 已提交
119 120 121 122


class TestStrideSliceOp2(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
123
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
124 125 126 127
        self.axes = [0]
        self.starts = [5]
        self.ends = [0]
        self.strides = [-1]
128
        self.infer_flags = [1]
W
wangchaochaohu 已提交
129 130 131 132


class TestStrideSliceOp3(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
133
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
134 135 136 137
        self.axes = [0]
        self.starts = [-1]
        self.ends = [-3]
        self.strides = [-1]
138
        self.infer_flags = [1]
W
wangchaochaohu 已提交
139 140 141 142


class TestStrideSliceOp4(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
143
        self.input = np.random.rand(3, 4, 10)
W
wangchaochaohu 已提交
144 145 146 147
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
148
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
149 150 151 152


class TestStrideSliceOp5(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
153
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
154 155 156 157
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 1, 3]
        self.strides = [1, 1, 1]
158
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
159 160 161 162


class TestStrideSliceOp6(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
163
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
164 165 166 167
        self.axes = [0, 1, 2]
        self.starts = [1, -1, 0]
        self.ends = [2, -3, 3]
        self.strides = [1, -1, 1]
168
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
169 170 171 172


class TestStrideSliceOp7(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
173
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
174 175 176 177
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 2, 3]
        self.strides = [1, 1, 1]
178
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
179 180 181 182


class TestStrideSliceOp8(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
183
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
184 185 186 187
        self.axes = [1]
        self.starts = [1]
        self.ends = [2]
        self.strides = [1]
188
        self.infer_flags = [1]
W
wangchaochaohu 已提交
189 190 191 192


class TestStrideSliceOp9(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
193
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
194 195 196 197
        self.axes = [1]
        self.starts = [-1]
        self.ends = [-2]
        self.strides = [-1]
198
        self.infer_flags = [1]
W
wangchaochaohu 已提交
199 200 201 202


class TestStrideSliceOp10(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
203
        self.input = np.random.rand(10, 10)
W
wangchaochaohu 已提交
204 205 206 207
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
208
        self.infer_flags = [1, 1]
W
wangchaochaohu 已提交
209 210 211 212 213 214 215 216 217


class TestStrideSliceOp11(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4)
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
218
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
219 220 221 222 223 224 225 226 227


class TestStrideSliceOp12(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5)
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
228
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
229 230 231 232 233 234 235 236 237


class TestStrideSliceOp13(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8)
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
238 239 240
        self.infer_flags = [1, 1, 1, 1, 1]


241 242 243 244 245 246 247 248 249 250
class TestStrideSliceOp14(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(4, 4, 4, 4)
        self.axes = [1, 2, 3]
        self.starts = [-5, 0, -7]
        self.ends = [-1, 2, 4]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, 1, 1]


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
class TestStrideSliceOpBool(TestStrideSliceOp):
    def test_check_grad(self):
        pass


class TestStrideSliceOpBool1D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(100).astype("bool")
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
        self.infer_flags = [1]


class TestStrideSliceOpBool2D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(10, 10).astype("bool")
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
        self.infer_flags = [1, 1]


class TestStrideSliceOpBool3D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 4, 10).astype("bool")
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
        self.infer_flags = [1, 1, 1]


class TestStrideSliceOpBool4D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4).astype("bool")
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool5D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5).astype("bool")
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool6D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8).astype("bool")
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1, 1]


316 317 318 319 320 321 322
class TestStridedSliceOp_starts_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        starts_tensor = []
        for index, ele in enumerate(self.starts):
323 324 325
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
326 327 328 329 330 331 332 333

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts_infer,
            'ends': self.ends,
            'strides': self.strides,
334
            'infer_flags': self.infer_flags,
335 336 337
        }

    def config(self):
338
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
339 340 341 342 343
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, -1, 1]
344 345 346
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

        self.starts_infer = [1, 10, 2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
364 365 366
            ends_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
367 368 369 370 371 372 373 374

        self.inputs = {'Input': self.input, 'EndsTensorList': ends_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends_infer,
            'strides': self.strides,
375
            'infer_flags': self.infer_flags,
376 377 378
        }

    def config(self):
379
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
380 381 382 383 384
        self.starts = [1, 0, 0]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 2]
        self.infer_flags = [1, -1, 1]
385 386 387
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        self.ends_infer = [3, 1, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_starts_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
404
            "StartsTensor": np.array(self.starts, dtype="int32"),
405 406 407 408 409 410 411 412 413 414 415
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
416
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
417 418 419 420 421
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
422 423 424
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
425 426 427 428 429 430 431 432 433 434 435 436 437 438

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
439
            "EndsTensor": np.array(self.ends, dtype="int32"),
440 441 442 443 444 445 446 447 448 449 450
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
451
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
452 453 454 455 456
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
457 458 459
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
460 461 462 463 464 465 466 467 468 469 470 471 472

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_listTensor_Tensor(OpTest):
    def setUp(self):
        self.config()
        ends_tensor = []
        for index, ele in enumerate(self.ends):
473 474 475
            ends_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
476 477 478 479
        self.op_type = "strided_slice"

        self.inputs = {
            'Input': self.input,
480
            "StartsTensor": np.array(self.starts, dtype="int32"),
481
            "EndsTensorList": ends_tensor,
482 483 484 485 486 487 488 489 490 491 492
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
493
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
494 495 496 497 498
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
499 500 501
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
502 503 504 505 506 507 508 509 510 511 512 513 514 515

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_strides_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
516
            "StridesTensor": np.array(self.strides, dtype="int32"),
517 518 519 520 521 522 523 524 525 526 527
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            #'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
528
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
529 530 531 532 533
        self.starts = [1, -1, 2]
        self.ends = [2, 0, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, -1, 1]
        self.infer_flags = [-1, -1, -1]
534 535 536
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides
        )
537 538 539 540 541 542 543 544 545

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


# Test python API
546
class TestStridedSliceAPI(unittest.TestCase):
547
    def test_1(self):
548
        input = np.random.random([3, 4, 5, 6]).astype("float64")
549 550
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
        minus_3 = fluid.layers.fill_constant([1], "int32", -3)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        starts = fluid.layers.data(
            name='starts', shape=[3], dtype='int32', append_batch_size=False
        )
        ends = fluid.layers.data(
            name='ends', shape=[3], dtype='int32', append_batch_size=False
        )
        strides = fluid.layers.data(
            name='strides', shape=[3], dtype='int32', append_batch_size=False
        )

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
            dtype="float64",
        )
        out_1 = paddle.strided_slice(
            x,
            axes=[0, 1, 2],
            starts=[-3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1],
        )
        out_2 = paddle.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1],
        )
        out_3 = paddle.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, minus_1],
            strides=[1, 1, 1],
        )
        out_4 = paddle.strided_slice(
            x, axes=[0, 1, 2], starts=starts, ends=ends, strides=strides
        )
591

592 593 594
        out_5 = x[-3:3, 0:100:2, -1:2:-1]
        out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
        out_7 = x[minus_1, 0:100:2, :, -1:2:-1]
595 596 597 598 599 600 601

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
602
                'ends': np.array([3, 2147483648, -1]).astype("int64"),
603
                'strides': np.array([1, 1, 1]).astype("int32"),
604
            },
605 606
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7],
        )
607 608 609 610
        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
611 612 613
        assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
        assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
W
wangchaochaohu 已提交
614

615 616 617 618 619 620
    def test_dygraph_op(self):
        x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
        axes = [1, 2, 3]
        starts = [-3, 0, 2]
        ends = [3, 2, 4]
        strides_1 = [1, 1, 1]
621 622 623
        sliced_1 = paddle.strided_slice(
            x, axes=axes, starts=starts, ends=ends, strides=strides_1
        )
624 625
        assert sliced_1.shape == (3, 2, 2, 2)

626 627 628 629
    @unittest.skipIf(
        not paddle.is_compiled_with_cuda(),
        "Cannot use CUDAPinnedPlace in CPU only version",
    )
630 631
    def test_cuda_pinned_place(self):
        with paddle.fluid.dygraph.guard():
632 633 634
            x = paddle.to_tensor(
                np.random.randn(2, 10), place=paddle.CUDAPinnedPlace()
            )
635 636
            self.assertTrue(x.place.is_cuda_pinned_place())
            y = x[:, ::2]
637
            self.assertFalse(x.place.is_cuda_pinned_place())
638 639
            self.assertFalse(y.place.is_cuda_pinned_place())

W
wangchaochaohu 已提交
640

641 642 643 644 645 646 647
class ArrayLayer(paddle.nn.Layer):
    def __init__(self, input_size=224, output_size=10, array_size=1):
        super(ArrayLayer, self).__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.array_size = array_size
        for i in range(self.array_size):
648 649 650 651 652
            setattr(
                self,
                self.create_name(i),
                paddle.nn.Linear(input_size, output_size),
            )
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

    def create_name(self, index):
        return 'linear_' + str(index)

    def forward(self, inps):
        array = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            array.append(linear(inps))

        tensor_array = self.create_tensor_array(array)

        tensor_array = self.array_slice(tensor_array)

        array1 = paddle.concat(tensor_array)
        array2 = paddle.concat(tensor_array[::-1])
        return array1 + array2 * array2

    def get_all_grads(self, param_name='weight'):
        grads = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            param = getattr(linear, param_name)

            g = param.grad
            if g is not None:
                g = g.numpy()

            grads.append(g)

        return grads

    def clear_all_grad(self):
        param_names = ['weight', 'bias']
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            for p in param_names:
                param = getattr(linear, p)
                param.clear_gradient()

    def array_slice(self, array):
        return array

    def create_tensor_array(self, tensors):
        tensor_array = None
        for i, tensor in enumerate(tensors):
            index = paddle.full(shape=[1], dtype='int64', fill_value=i)
            if tensor_array is None:
                tensor_array = paddle.tensor.array_write(tensor, i=index)
            else:
                paddle.tensor.array_write(tensor, i=index, array=tensor_array)
        return tensor_array


class TestStridedSliceTensorArray(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def grad_equal(self, g1, g2):
        if g1 is None:
            g1 = np.zeros_like(g2)
        if g2 is None:
            g2 = np.zeros_like(g1)
        return np.array_equal(g1, g2)

    def is_grads_equal(self, g1, g2):
        for i, g in enumerate(g1):

721 722 723 724
            self.assertTrue(
                self.grad_equal(g, g2[i]),
                msg="gradient_1:\n{} \ngradient_2:\n{}".format(g, g2),
            )
725 726 727 728 729

    def is_grads_equal_zeros(self, grads):
        for g in grads:
            self.assertTrue(
                self.grad_equal(np.zeros_like(g), g),
730 731
                msg="The gradient should be zeros, but received \n{}".format(g),
            )
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    def create_case(self, net):
        inps1 = paddle.randn([1, net.input_size], dtype='float32')
        inps2 = inps1.detach().clone()
        l1 = net(inps1)
        s1 = l1.numpy()
        l1.sum().backward()
        grads_dy = net.get_all_grads()
        net.clear_all_grad()
        grads_zeros = net.get_all_grads()

        self.is_grads_equal_zeros(grads_zeros)

        func = paddle.jit.to_static(net.forward)
        l2 = func(inps2)
        s2 = l2.numpy()
        l2.sum().backward()
        grads_static = net.get_all_grads()
        net.clear_all_grad()
751
        # compare result of dygraph and static
752
        self.is_grads_equal(grads_static, grads_dy)
753 754 755
        np.testing.assert_array_equal(
            s1,
            s2,
756 757 758 759
            err_msg='dygraph graph result:\n{} \nstatic dygraph result:\n{}'.format(
                l1.numpy(), l2.numpy()
            ),
        )
760 761 762 763 764 765 766 767 768 769 770 771

    def test_strided_slice_tensor_array_cuda_pinned_place(self):
        if paddle.device.is_compiled_with_cuda():
            with paddle.fluid.dygraph.guard():

                class Simple(paddle.nn.Layer):
                    def __init__(self):
                        super(Simple, self).__init__()

                    def forward(self, inps):
                        tensor_array = None
                        for i, tensor in enumerate(inps):
772 773 774
                            index = paddle.full(
                                shape=[1], dtype='int64', fill_value=i
                            )
775 776
                            if tensor_array is None:
                                tensor_array = paddle.tensor.array_write(
777 778
                                    tensor, i=index
                                )
779
                            else:
780 781 782
                                paddle.tensor.array_write(
                                    tensor, i=index, array=tensor_array
                                )
783 784 785 786 787 788 789 790

                        array1 = paddle.concat(tensor_array)
                        array2 = paddle.concat(tensor_array[::-1])
                        return array1 + array2 * array2

                net = Simple()
                func = paddle.jit.to_static(net.forward)

791 792 793 794 795 796 797 798 799 800
                inps1 = paddle.to_tensor(
                    np.random.randn(2, 10),
                    place=paddle.CUDAPinnedPlace(),
                    stop_gradient=False,
                )
                inps2 = paddle.to_tensor(
                    np.random.randn(2, 10),
                    place=paddle.CUDAPinnedPlace(),
                    stop_gradient=False,
                )
801 802 803 804 805 806 807 808 809

                self.assertTrue(inps1.place.is_cuda_pinned_place())
                self.assertTrue(inps2.place.is_cuda_pinned_place())

                result = func([inps1, inps2])

                self.assertFalse(result.place.is_cuda_pinned_place())

    def test_strided_slice_tensor_array(self):
810
        class Net01(ArrayLayer):
811 812 813
            def array_slice(self, tensors):
                return tensors[::-1]

814
        self.create_case(Net01(array_size=10))
815

816
        class Net02(ArrayLayer):
817 818 819
            def array_slice(self, tensors):
                return tensors[::-2]

820
        self.create_case(Net02(input_size=112, array_size=11))
821

822
        class Net03(ArrayLayer):
823 824 825
            def array_slice(self, tensors):
                return tensors[::-3]

826
        self.create_case(Net03(input_size=112, array_size=9))
827

828
        class Net04(ArrayLayer):
829 830 831
            def array_slice(self, tensors):
                return tensors[1::-4]

832
        self.create_case(Net04(input_size=112, array_size=9))
833

834
        class Net05(ArrayLayer):
835 836 837
            def array_slice(self, tensors):
                return tensors[:7:-4]

838
        self.create_case(Net05(input_size=112, array_size=9))
839

840
        class Net06(ArrayLayer):
841 842 843
            def array_slice(self, tensors):
                return tensors[8:0:-4]

844
        self.create_case(Net06(input_size=112, array_size=9))
845

846
        class Net07(ArrayLayer):
847 848 849
            def array_slice(self, tensors):
                return tensors[8:1:-4]

850
        self.create_case(Net07(input_size=112, array_size=9))
851

852
        class Net08(ArrayLayer):
853 854 855
            def array_slice(self, tensors):
                return tensors[::2]

856
        self.create_case(Net08(input_size=112, array_size=11))
857

858
        class Net09(ArrayLayer):
859 860 861
            def array_slice(self, tensors):
                return tensors[::3]

862
        self.create_case(Net09(input_size=112, array_size=9))
863

864
        class Net10(ArrayLayer):
865 866 867
            def array_slice(self, tensors):
                return tensors[1::4]

868
        self.create_case(Net10(input_size=112, array_size=9))
869

870
        class Net11(ArrayLayer):
871 872 873
            def array_slice(self, tensors):
                return tensors[:8:4]

874
        self.create_case(Net11(input_size=112, array_size=9))
875

876
        class Net12(ArrayLayer):
877 878 879
            def array_slice(self, tensors):
                return tensors[1:8:4]

880
        self.create_case(Net12(input_size=112, array_size=9))
881

882
        class Net13(ArrayLayer):
883 884 885
            def array_slice(self, tensors):
                return tensors[8:10:4]

886
        self.create_case(Net13(input_size=112, array_size=13))
887

888
        class Net14(ArrayLayer):
889 890 891
            def array_slice(self, tensors):
                return tensors[3:10:4]

892
        self.create_case(Net14(input_size=112, array_size=13))
893

894
        class Net15(ArrayLayer):
895 896 897
            def array_slice(self, tensors):
                return tensors[2:10:4]

898
        self.create_case(Net15(input_size=112, array_size=13))
899

900
        class Net16(ArrayLayer):
901 902 903
            def array_slice(self, tensors):
                return tensors[3:10:3]

904
        self.create_case(Net16(input_size=112, array_size=13))
905

906
        class Net17(ArrayLayer):
907 908 909
            def array_slice(self, tensors):
                return tensors[3:15:3]

910
        self.create_case(Net17(input_size=112, array_size=13))
911

912
        class Net18(ArrayLayer):
913 914 915
            def array_slice(self, tensors):
                return tensors[0:15:3]

916
        self.create_case(Net18(input_size=112, array_size=13))
917

918
        class Net19(ArrayLayer):
919 920 921
            def array_slice(self, tensors):
                return tensors[-1:-5:-3]

922
        self.create_case(Net19(input_size=112, array_size=13))
923

924
        class Net20(ArrayLayer):
925 926 927
            def array_slice(self, tensors):
                return tensors[-1:-6:-3]

928
        self.create_case(Net20(input_size=112, array_size=13))
929

930
        class Net21(ArrayLayer):
931 932 933
            def array_slice(self, tensors):
                return tensors[-3:-6:-3]

934
        self.create_case(Net21(input_size=112, array_size=13))
935

936
        class Net22(ArrayLayer):
937 938 939
            def array_slice(self, tensors):
                return tensors[-5:-1:3]

940
        self.create_case(Net22(input_size=112, array_size=13))
941

942
        class Net23(ArrayLayer):
943 944 945
            def array_slice(self, tensors):
                return tensors[-6:-1:3]

946
        self.create_case(Net23(input_size=112, array_size=13))
947

948
        class Net24(ArrayLayer):
949 950 951
            def array_slice(self, tensors):
                return tensors[-6:-3:3]

952
        self.create_case(Net24(input_size=112, array_size=13))
953

954
        class Net25(ArrayLayer):
955 956 957
            def array_slice(self, tensors):
                return tensors[0::3]

958
        self.create_case(Net25(input_size=112, array_size=13))
959

960
        class Net26(ArrayLayer):
961 962 963
            def array_slice(self, tensors):
                return tensors[-60:20:3]

964
        self.create_case(Net26(input_size=112, array_size=13))
965

966
        class Net27(ArrayLayer):
967 968 969
            def array_slice(self, tensors):
                return tensors[-3:-60:-3]

970
        self.create_case(Net27(input_size=112, array_size=13))
971 972


973 974 975
@unittest.skipIf(
    not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
class TestStridedSliceFloat16(unittest.TestCase):
    def init_test_case(self):
        self.op_type = 'strided_slice'
        self.input_shape = [3, 3, 3, 6, 7, 8]
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1, 1]

    def check_main(self, x_np, dtype):
        paddle.disable_static()
        x_np = x_np.astype(dtype)
        x = paddle.to_tensor(x_np)
        x.stop_gradient = False
991 992 993
        output = strided_slice_native_forward(
            x, self.axes, self.starts, self.ends, self.strides
        )
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        x_grad = paddle.grad(output, x)
        output_np = output[0].numpy().astype('float32')
        x_grad_np = x_grad[0].numpy().astype('float32')
        paddle.enable_static()
        return output_np, x_grad_np

    def test_check(self):
        self.init_test_case()
        x_np = np.random.random(self.input_shape).astype("float16")

        output_np_fp16, x_grad_np_fp16 = self.check_main(x_np, 'float16')
        output_np_fp32, x_grad_np_fp32 = self.check_main(x_np, 'float32')

        np.testing.assert_allclose(output_np_fp16, output_np_fp32)

        np.testing.assert_allclose(x_grad_np_fp16, x_grad_np_fp32)


W
wangchaochaohu 已提交
1012 1013
if __name__ == "__main__":
    unittest.main()