the_one_ps.py 64.1 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
21
from paddle.distributed.ps.utils.public import *  # noqa: F403
Z
ziyoujiyi 已提交
22 23 24 25
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
W
wangguanqun 已提交
26
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
27 28 29
from paddle.distributed.fleet.base.private_helper_function import (
    wait_server_ready,
)
Z
ziyoujiyi 已提交
30
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
31 32
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
33
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
34

Z
ziyoujiyi 已提交
35
__all__ = [
36 37 38 39 40 41
    'Table',
    'SparseTable',
    'GeoSparseTable',
    'BarrierTable',
    'TensorTable',
    'DenseTable',
Z
ziyoujiyi 已提交
42
]
Z
ziyoujiyi 已提交
43 44


W
wangguanqun 已提交
45 46 47 48
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
49 50
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
51 52 53


def parse_table_class(varname, program_id, context):
54
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
55
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
56 57 58 59 60
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

61 62 63 64 65
        if (
            param_name == varname
            and op.type == "lookup_table"
            or op.type == "lookup_table_v2"
        ):
Z
ziyoujiyi 已提交
66 67 68 69 70 71
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
72
def check_embedding_dim(accessor_proto, varname, program_id, context):
73
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
74
    embedding_dim = 0
W
wangguanqun 已提交
75
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
76 77
        if var.name == varname:
            embedding_dim = var.shape[1]
78 79 80 81 82
            print(
                'new var: {}, {}, {}'.format(
                    var, embedding_dim, accessor_proto.fea_dim
                )
            )
Z
ziyoujiyi 已提交
83
            break
84

Z
ziyoujiyi 已提交
85
    fea_dim = accessor_proto.fea_dim
86 87 88
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
89 90 91 92
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}".format(
                    embedding_dim + 2, fea_dim
                )
            )
93 94 95
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
96 97 98 99
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}".format(
                    embedding_dim, fea_dim
                )
            )
100

Z
ziyoujiyi 已提交
101
    embedx_dim = accessor_proto.embedx_dim
102 103 104
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
105 106 107 108
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}".format(
                    embedding_dim - 1, embedx_dim
                )
            )
109 110 111
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
112 113 114 115
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}".format(
                    embedding_dim - 3, embedx_dim
                )
            )
Z
ziyoujiyi 已提交
116 117


Z
ziyoujiyi 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
class Service:
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
    def __init__(self):
132
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
133 134 135 136 137 138

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
139 140 141 142
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
143 144
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
145

Z
ziyoujiyi 已提交
146
    # TableAccessorParameter accessor
147 148 149
    def _set(
        self, accessor_proto, varname, program_id, context, common_accessor
    ):
150
        main_program, startup_program, idx = get_program_by_id(
151 152
            context, program_id
        )
Z
ziyoujiyi 已提交
153 154 155 156 157
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
158

Z
ziyoujiyi 已提交
159
        if not accessor_proto.HasField("accessor_class"):
160
            # DownpourSparseValueAccessor
161
            if context['use_ps_gpu']:
162
                accessor_proto.accessor_class = "CtrDymfAccessor"
163 164
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
165
        if not accessor_proto.HasField("fea_dim"):
166 167 168 169
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
170
        if not accessor_proto.HasField("embedx_dim"):
171 172 173 174
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
175 176 177
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
178 179 180 181 182 183
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
184
        ctr_accessor_param = accessor_proto.ctr_accessor_param
185 186
        if accessor_proto.embedx_dim == 0:
            ctr_accessor_param.zero_init = False
Z
ziyoujiyi 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
207 208
            accessor_proto.embed_sgd_param,
            accessor_proto.embedx_sgd_param,
Z
ziyoujiyi 已提交
209 210
        ]:
            if not sgd_param.HasField("name"):
211 212 213 214
                if common_accessor.accessor_class == "sgd":
                    sgd_param.name = "SparseNaiveSGDRule"
                if common_accessor.accessor_class == "adam":
                    sgd_param.name = "SparseAdamSGDRule"
Z
ziyoujiyi 已提交
215 216
                else:  # for fl-ps, because geo accessor is 'sum'
                    sgd_param.name = "SparseAdamSGDRule"
217

218 219 220 221
            if (
                sgd_param.name == "SparseAdaGradSGDRule"
                or sgd_param.name == "StdAdaGradSGDRule"
            ):
Z
ziyoujiyi 已提交
222 223 224 225 226 227 228 229
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
230

Z
ziyoujiyi 已提交
231 232
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
233 234 235
                    learning_rate = common_accessor.initializers[-1].split("&")[
                        1
                    ]
236
                    sgd_param.naive.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
237
                if not sgd_param.naive.HasField("initial_range"):
238 239 240
                    initial_range = common_accessor.initializers[0].split("&")[
                        -1
                    ]
241
                    sgd_param.naive.initial_range = float(initial_range)
Z
ziyoujiyi 已提交
242 243
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
244

245 246 247 248
            if (
                sgd_param.name == "SparseAdamSGDRule"
                or sgd_param.name == "SparseSharedAdamSGDRule"
            ):
Z
ziyoujiyi 已提交
249
                if not sgd_param.adam.HasField("learning_rate"):
250 251 252
                    learning_rate = common_accessor.initializers[-1].split("&")[
                        1
                    ]
253
                    sgd_param.adam.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
254
                if not sgd_param.adam.HasField("initial_range"):
255 256 257
                    initial_range = common_accessor.initializers[0].split("&")[
                        -1
                    ]
258 259 260
                    sgd_param.adam.initial_range = float(initial_range)

                attr_list = [x.split("&") for x in common_accessor.attrs]
261 262 263 264
                if (
                    not sgd_param.adam.HasField("beta1_decay_rate")
                    and common_accessor.accessor_class == "adam"
                ):
265 266
                    sgd_param.adam.beta1_decay_rate = float(attr_list[0][1])
                else:
Z
ziyoujiyi 已提交
267
                    sgd_param.adam.beta1_decay_rate = 0.9
268 269 270 271
                if (
                    not sgd_param.adam.HasField("beta2_decay_rate")
                    and common_accessor.accessor_class == "adam"
                ):
272 273
                    sgd_param.adam.beta2_decay_rate = float(attr_list[1][1])
                else:
Z
ziyoujiyi 已提交
274
                    sgd_param.adam.beta2_decay_rate = 0.999
275 276 277 278
                if (
                    not sgd_param.adam.HasField("ada_epsilon")
                    and common_accessor.accessor_class == "adam"
                ):
279 280
                    sgd_param.adam.ada_epsilon = float(attr_list[2][1])
                else:
Z
ziyoujiyi 已提交
281 282 283 284 285 286
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
Z
ziyoujiyi 已提交
287
    def __init__(self):
Z
ziyoujiyi 已提交
288 289 290
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
291 292 293 294
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
295
        self.sync = False
Z
ziyoujiyi 已提交
296 297 298 299 300 301 302 303 304
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        opt_input_map["adam"] = [
            ("Param", None),
            ("Moment1", None),
            ("Moment2", None),
            ("Beta1Pow", 1),
            ("Beta2Pow", 1),
            ("LearningRate", 1),
        ]
        opt_input_map["adam_d2sum"] = [
            ("Param", None),
            ("D2Sum", None),
            ("G2Sum", None),
            ("Moment", None),
            ("MomentDecayRate", 1),
            ("AdaDecayRate", 1),
            ("AdaEpsilon", 1),
            ("LearningRate", 1),
        ]
Z
ziyoujiyi 已提交
323
        opt_input_map["sum"] = [("Param", None)]
324 325 326 327 328
        opt_input_map["naive_adagrad"] = [
            ("Param", None),
            ("G2Sum", 1),
            ("LearningRate", 1),
        ]
W
wangguanqun 已提交
329
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
330 331 332 333 334

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
335 336 337 338 339 340 341 342 343 344
        opt_attr_map["adam"] = [
            ("beta1", "f"),
            ("beta2", "f"),
            ("epsilon", "f"),
        ]
        opt_attr_map["adam_d2sum"] = [
            ("beta1", "f"),
            ("beta2", "f"),
            ("epsilon", "f"),
        ]
345
        opt_attr_map["summary"] = [("summary_decay_rate", "f")]
Z
ziyoujiyi 已提交
346 347 348 349 350 351 352 353 354 355 356

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
357
    def parse_entry(self, varname, program_id, context):
358
        main_program, startup_program, idx = get_program_by_id(
359 360
            context, program_id
        )
W
wangguanqun 已提交
361
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
391
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
392
        for op in o_startup_program.global_block().ops:
393 394 395 396
            if (
                op.type in self.opt_init_map.keys()
                and origin_var_name == op.output("Out")[0]
            ):
Z
ziyoujiyi 已提交
397
                init_attr = [op.type]
398
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
399
                for attr in self.opt_init_map[op.type]:
400
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
401
                    init_attr.append(str(op.attr(attr)))
402
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
403 404 405 406
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
407 408 409 410 411 412
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
413 414
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
415

416
        main_program, startup_program, idx = get_program_by_id(
417 418
            context, ctx.program_id()
        )
Z
ziyoujiyi 已提交
419 420 421
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
422 423
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
424 425 426 427
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
428 429 430
                op.input("Param")[0]
                == context['grad_name_to_param_name'][grad_name]
            ):
Z
ziyoujiyi 已提交
431 432 433 434 435 436 437 438 439 440 441 442
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
443 444
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
445

446
        if oop.type != 'adam' and adam_d2sum:
Z
ziyoujiyi 已提交
447 448 449 450 451 452 453 454 455 456 457
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
458 459 460 461 462
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
463 464 465 466
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
467 468
            if oop.type != 'sgd' and oop.type != 'adam':
                raise ValueError(
469 470
                    "The dense optimizer in PS is only supported SGD or Adam!"
                )
Z
ziyoujiyi 已提交
471 472 473 474 475 476 477
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
478
                # for dims
Z
ziyoujiyi 已提交
479 480
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
481
                        shape = single_dim
Z
ziyoujiyi 已提交
482
                    else:
W
wangguanqun 已提交
483
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
484 485
                dims.append(shape)

486
                # for initializers
Z
ziyoujiyi 已提交
487
                if formal_name == "Param" or formal_name == "LearningRate":
488 489 490 491 492 493 494 495
                    param = main_program.global_block().vars[
                        oop.input(formal_name)[0]
                    ]
                    # TODO: for dense learning_rate, can be different from sparse lr
                    if (
                        formal_name == "LearningRate"
                        and param.name != "learning_rate_" + str(idx)
                    ):
Z
ziyoujiyi 已提交
496 497
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
498 499
                            "learning_rate_" + str(idx)
                        ]
Z
ziyoujiyi 已提交
500

501
                    initializer = self.get_initializer_attr(
502 503
                        param.name, startup_program
                    )
Z
ziyoujiyi 已提交
504 505 506 507 508 509 510 511 512
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
513
            elif self.accessor_class == "summary":
514
                # for dims
W
wangguanqun 已提交
515 516 517 518 519 520 521
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

522
                # for initializers
W
wangguanqun 已提交
523
                if formal_name == "Param":
524 525 526
                    param = main_program.global_block().vars[
                        oop.input(formal_name)[0]
                    ]
W
wangguanqun 已提交
527

528
                    initializer = self.get_initializer_attr(
529 530
                        param.name, startup_program
                    )
W
wangguanqun 已提交
531
                elif formal_name == "SummaryDecayRate":
532
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
533 534 535
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
536 537 538 539 540 541
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
542 543 544 545 546 547 548
                    param = main_program.global_block().vars[
                        oop.input(formal_name)[0]
                    ]
                    if (
                        formal_name == "LearningRate"
                        and param.name != "learning_rate_" + str(idx)
                    ):
Z
ziyoujiyi 已提交
549 550
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
551 552
                            "learning_rate_" + str(idx)
                        ]
Z
ziyoujiyi 已提交
553 554 555

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
556
                            shape = single_dim
Z
ziyoujiyi 已提交
557
                        else:
558 559 560
                            shape = self.get_shard(
                                size, pserver_num, pserver_id
                            )
Z
ziyoujiyi 已提交
561 562
                    dims.append(shape)

563
                    initializer = self.get_initializer_attr(
564 565
                        param.name, startup_program
                    )
Z
ziyoujiyi 已提交
566 567
                    initializers.append(initializer)

568 569 570 571
        if self.accessor_class == 'summary':
            datanorm_ops = get_datanorm_ops(main_program)
            for op in datanorm_ops:
                if ("BatchSize" in op.input_names) and (
572 573 574
                    op.input("BatchSize")[0]
                    == context['grad_name_to_param_name'][grad_name]
                ):
575 576 577
                    oop = op
                    break

Z
ziyoujiyi 已提交
578 579
        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
580
            attrs.append("&".join([attr_varname, str(value)]))
Z
ziyoujiyi 已提交
581 582 583 584 585 586

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
587 588 589 590 591 592 593 594 595 596 597 598
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
599
        proto.attr = "#".join(self.attrs)
Z
ziyoujiyi 已提交
600 601 602


class Tensor:
Z
ziyoujiyi 已提交
603 604 605 606
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
607
        tensor_proto.main_program_id = self.tensor_dict.get(
608 609
            "main_program_id", 0
        )
Z
ziyoujiyi 已提交
610
        tensor_proto.startup_program_id = self.tensor_dict.get(
611 612
            "startup_program_id", 0
        )
Z
ziyoujiyi 已提交
613 614 615
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
616 617
            "tensor_table_class", ''
        )
Z
ziyoujiyi 已提交
618 619 620 621 622 623 624


class Table:
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
625 626 627
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
628 629
        self.tensor = None

Z
ziyoujiyi 已提交
630 631
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
632 633


Z
ziyoujiyi 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
class BarrierTable(Table):
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
652
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
667 668


Z
ziyoujiyi 已提交
669 670 671 672 673 674
class TensorTable(Table):
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
675

Z
ziyoujiyi 已提交
676 677
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
678
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
679
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
680

Z
ziyoujiyi 已提交
681
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
682

683
        table_proto.common.table_name = self.tensor_dict.get(
684 685
            "feed_var_name", ''
        )
Z
ziyoujiyi 已提交
686
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
687

Z
ziyoujiyi 已提交
688 689
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
690 691


Z
ziyoujiyi 已提交
692 693 694 695 696 697 698 699
class SparseTable(Table):
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
700

Z
ziyoujiyi 已提交
701 702
    def _set(self, table_proto):
        ctx = self.ctx
703 704 705
        if (
            ctx.is_tensor_table()
            or len(ctx.origin_varnames()) < 1
706
            or (not ctx.is_sparse())
707
        ):
Z
ziyoujiyi 已提交
708 709 710
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
711
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
712
        table_proto.shard_num = self.shard_num
713
        if table_proto.sparse_table_cache_file_num > len(
714 715
            get_ps_endpoints(self.context['role_maker'])
        ):
716
            table_proto.sparse_table_cache_file_num = len(
717 718
                get_ps_endpoints(self.context['role_maker'])
            )
Z
ziyoujiyi 已提交
719 720

        self.common.table_name = self.context['grad_name_to_param_name'][
721 722
            ctx.origin_varnames()[0]
        ]
Z
ziyoujiyi 已提交
723

724
        self.common.parse_by_optimizer(ctx, self.context)
725 726 727
        self.common.parse_entry(
            self.common.table_name, ctx.program_id(), self.context
        )
728 729 730 731
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)

Z
ziyoujiyi 已提交
732 733
        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
734 735
            "user_defined_strategy"
        ].sparse_table_configs
Z
ziyoujiyi 已提交
736 737 738 739 740
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
741 742 743 744 745
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
746 747 748
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
749 750 751 752 753 754 755 756 757 758
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
759

760
        if usr_table_proto.HasField("enable_sparse_table_cache"):
761 762 763
            table_proto.enable_sparse_table_cache = (
                usr_table_proto.enable_sparse_table_cache
            )
764
        if usr_table_proto.HasField("sparse_table_cache_rate"):
765 766 767
            table_proto.sparse_table_cache_rate = (
                usr_table_proto.sparse_table_cache_rate
            )
768
        if usr_table_proto.HasField("sparse_table_cache_file_num"):
769 770 771
            table_proto.sparse_table_cache_file_num = (
                usr_table_proto.sparse_table_cache_file_num
            )
772 773 774 775 776
        if usr_table_proto.HasField("enable_revert"):
            table_proto.enable_revert = usr_table_proto.enable_revert
        if usr_table_proto.HasField("shard_merge_rate"):
            table_proto.shard_merge_rate = usr_table_proto.shard_merge_rate

Z
ziyoujiyi 已提交
777 778
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
779 780
                "The accessor of sparse table is not set, use default value."
            )
Z
ziyoujiyi 已提交
781

Z
ziyoujiyi 已提交
782
        table_proto.accessor.ParseFromString(
783 784 785 786 787 788 789 790 791
            usr_table_proto.accessor.SerializeToString()
        )
        self.accessor._set(
            table_proto.accessor,
            self.common.table_name,
            ctx.program_id(),
            self.context,
            self.common,
        )
Z
ziyoujiyi 已提交
792

793 794 795 796 797 798
        check_embedding_dim(
            table_proto.accessor,
            self.common.table_name,
            ctx.program_id(),
            self.context,
        )
Z
ziyoujiyi 已提交
799 800


Z
ziyoujiyi 已提交
801 802 803
class GeoSparseTable(SparseTable):
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
804
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
805 806 807 808 809
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
810 811 812
        if (
            ctx.is_tensor_table()
            or len(ctx.origin_varnames()) < 1
813
            or (not ctx.is_sparse())
814
        ):
Z
ziyoujiyi 已提交
815 816 817
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
818
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
819 820 821 822 823 824 825
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
826 827
            ctx.origin_varnames()[0]
        ]
Z
ziyoujiyi 已提交
828
        self.common.parse_by_optimizer(ctx, self.context)
829 830 831
        self.common.parse_entry(
            self.common.table_name, ctx.program_id(), self.context
        )
Z
ziyoujiyi 已提交
832 833 834 835 836 837 838 839 840 841
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
842

Z
ziyoujiyi 已提交
843 844
    def _set(self, table_proto):
        ctx = self.ctx
845 846 847
        if (
            ctx.is_tensor_table()
            or len(ctx.origin_varnames()) < 1
848
            or (ctx.is_sparse())
849
        ):
Z
ziyoujiyi 已提交
850 851 852 853
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
854
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
855
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
856 857 858 859 860 861 862 863
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
864 865 866
        self.common.parse_entry(
            self.common.table_name, ctx.program_id(), self.context
        )
Z
ziyoujiyi 已提交
867 868 869 870 871 872
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
Z
ziyoujiyi 已提交
873
    def __init__(self):
Z
ziyoujiyi 已提交
874
        pass
Z
ziyoujiyi 已提交
875

Z
ziyoujiyi 已提交
876 877
    def _set(self):
        pass
Z
ziyoujiyi 已提交
878 879


Z
ziyoujiyi 已提交
880 881 882 883 884 885
class DownpourServer(Server):
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
886 887 888 889


class Worker:
    def __init__(self):
Z
ziyoujiyi 已提交
890
        pass
Z
ziyoujiyi 已提交
891

Z
ziyoujiyi 已提交
892 893
    def _set(self):
        pass
Z
ziyoujiyi 已提交
894 895


Z
ziyoujiyi 已提交
896 897 898 899 900 901
class DownpourWorker(Worker):
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
902 903 904


class fsClient:
Z
ziyoujiyi 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
924
        self.barrier_table_id = None
925

Z
ziyoujiyi 已提交
926
        self.send_ctx = get_the_one_send_context(
927 928
            self.context, split_dense_table=self.is_heter_ps_mode
        )
Z
ziyoujiyi 已提交
929 930 931 932 933 934 935 936 937

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
938
        self.ps_desc = the_one_ps_pb2.PSParameter()
939
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
940 941 942 943 944 945 946

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
947 948 949 950 951
            tables.append(
                globals()['TensorTable'](
                    len(tables), tensor_dict, self.context['role_maker']
                )
            )
Z
ziyoujiyi 已提交
952 953 954 955 956 957
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
958
            print("idx, name, ctx:", idx, name, ctx)
Z
ziyoujiyi 已提交
959 960
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
961 962 963 964 965 966 967
                    if (
                        self.context['local_sparse']
                        and name[:-5] in self.context['local_sparse']
                    ) or (not self.context['local_sparse']):
                        tables.append(
                            globals()['GeoSparseTable'](self.context, ctx)
                        )
Z
ziyoujiyi 已提交
968
                    else:
969 970 971
                        tables.append(
                            globals()['SparseTable'](self.context, ctx)
                        )
Z
ziyoujiyi 已提交
972 973 974 975 976 977 978 979 980 981 982 983
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
984
        else:
Z
ziyoujiyi 已提交
985 986 987 988 989
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

990 991 992
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
993 994
    def build_worker_desc(self):
        for table in self.tables:
995 996
            table_proto = (
                self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add()
Z
ziyoujiyi 已提交
997 998
            )
            table._set(table_proto)
999 1000
            table_proto = (
                self.ps_desc.server_param.downpour_server_param.downpour_table_param.add()
Z
ziyoujiyi 已提交
1001 1002
            )
            table._set(table_proto)
1003 1004
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
1005
        self.service._set(
1006 1007
            self.ps_desc.server_param.downpour_server_param.service_param
        )
1008
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
1009 1010 1011
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
1012
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
1013
        for table in self.tables:
1014 1015
            table_proto = (
                self.ps_desc.server_param.downpour_server_param.downpour_table_param.add()
Z
ziyoujiyi 已提交
1016 1017
            )
            table._set(table_proto)
1018 1019 1020 1021
            if (
                table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE
                and table_proto.common is not None
            ):
Z
ziyoujiyi 已提交
1022
                self.sparse_table_maps[
1023 1024
                    table_proto.common.table_name
                ] = table_proto.table_id
Z
ziyoujiyi 已提交
1025 1026

        self.service._set(
1027 1028
            self.ps_desc.server_param.downpour_server_param.service_param
        )
Z
ziyoujiyi 已提交
1029 1030
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
1031 1032 1033 1034 1035 1036 1037 1038


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
1039
        self._coordinator = None
Z
ziyoujiyi 已提交
1040 1041
        self._server_sub_program = []
        self._heter_client = None
1042
        self._send_ctx = None
Z
ziyoujiyi 已提交
1043 1044 1045 1046

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
1047 1048
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
1049

Z
ziyoujiyi 已提交
1050
        self.origin_main_program = context["origin_main_program"]
1051 1052 1053
        self.origin_main_programs = context.get(
            "origin_main_programs", [self.origin_main_program]
        )
Z
ziyoujiyi 已提交
1054 1055
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
1056 1057
            'origin_startup_programs', [context['origin_startup_program']]
        )
Z
ziyoujiyi 已提交
1058
        self.context[
1059 1060
            'is_heter_ps_mode'
        ] = self.role_maker._is_heter_parameter_server_mode
Z
ziyoujiyi 已提交
1061
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
1062
        self.context['trainer'] = TrainerRuntimeConfig(
1063 1064
            context['valid_strategy']
        )
Z
ziyoujiyi 已提交
1065
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
1066
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
1067 1068 1069 1070 1071
            'use_ps_gpu'
        ]
        self.context['is_sync'] = (
            True if self.context['ps_mode'] == DistributedMode.SYNC else False
        )
Z
ziyoujiyi 已提交
1072
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
1073
        self.context['tensor_table'] = {}
1074 1075
        # FL
        self.context['local_sparse'] = context[
1076 1077
            "user_defined_strategy"
        ].trainer_desc_configs["local_sparse"]
1078
        self.context['remote_sparse'] = context[
1079 1080 1081 1082 1083 1084 1085
            "user_defined_strategy"
        ].trainer_desc_configs["remote_sparse"]
        print(
            "fl-ps > local_sparse: {}, remote_sparse: {}".format(
                self.context['local_sparse'], self.context['remote_sparse']
            )
        )
1086

W
wangguanqun 已提交
1087
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
1088

1089 1090
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

1091
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
1092
        self.string_hosts = []
1093
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
1094 1095 1096 1097
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
1108 1109
        self.ps_desc_builder = PsDescBuilder(self.context)

1110
    def _init_all_params(self, scopes, send_ctx, recv_map):
1111
        all_var_names = []
1112 1113 1114 1115 1116 1117 1118
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
1119
            # print("init params:", idx, table_id, var_names)
1120
            self._worker.push_dense_params(scope, table_id, var_names)
1121 1122
            all_var_names.extend(var_names)
        return all_var_names
1123 1124

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
1125
        all_var_names = []
1126 1127 1128 1129 1130 1131 1132
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
1133
            # print("pull all dense:", idx, table_id, var_names)
1134
            self._worker.pull_dense_params(scope, table_id, var_names)
1135 1136
            all_var_names.extend(var_names)
        return all_var_names
1137

1138
    def _init_params(self, program, scope, send_ctx, recv_map):
1139
        all_var_names = []
1140 1141 1142 1143 1144 1145 1146 1147 1148
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)
1149 1150
            all_var_names.extend(var_names)
        return all_var_names
1151

1152
    def _pull_dense(self, program, scope, send_ctx, recv_map):
1153
        all_var_names = []
1154 1155 1156 1157 1158 1159 1160 1161 1162
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)
1163 1164
            all_var_names.extend(var_names)
        return all_var_names
1165 1166

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
1167
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
1168 1169 1170 1171 1172 1173
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
1174 1175 1176 1177
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
1178 1179 1180 1181

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
1182 1183
                "pserver_endpoints"
            ] = self.role_maker._get_pserver_endpoints()
Z
ziyoujiyi 已提交
1184 1185 1186 1187
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
1188 1189
            self.context, split_dense_table=self.is_heter_ps_mode
        )
Z
ziyoujiyi 已提交
1190 1191 1192
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1193 1194
            ep_list=self.endpoints,
        )
1195
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
1196 1197
        trainer_config = self.context['trainer']

1198 1199
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1211
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1212 1213 1214 1215 1216

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1217
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1218

1219
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
Z
ziyoujiyi 已提交
1220 1221 1222
        if not self.is_heter_ps_mode:
            self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
            print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
1223 1224 1225
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
1226 1227 1228
            self._worker.init_fl_worker(
                self.coordinator_hosts, self.role_id, self.trainer_endpoint
            )
1229

1230 1231 1232 1233
        if (
            self.context['ps_mode'] == DistributedMode.GEO
            or self.is_heter_ps_mode
        ):
1234
            self._communicator = Communicator(
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
                trainer_config.mode,
                kwargs,
                trainer_config.get_communicator_flags(),
            )
            self._communicator.init_with_ctx(
                send_ctx,
                dense_map,
                worker_desc,
                self.string_hosts,
                fluid.global_scope(),
            )
Z
ziyoujiyi 已提交
1246
        fleet.util.barrier()
1247 1248 1249

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1250
        if isinstance(info, list) and len(info) > 0:
1251
            all_info = self.role_maker._all_gather(
1252 1253
                info[0]
            )  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1254 1255 1256 1257
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1258 1259 1260 1261 1262

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1263 1264 1265 1266 1267 1268 1269 1270
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1281
        if not is_test:
1282 1283
            if (
                self.context['ps_mode'] == DistributedMode.GEO
1284
                or self.is_heter_ps_mode
1285
            ):
1286
                self._communicator.init_params(dense_map)
1287
            else:
D
danleifeng 已提交
1288
                if not self.context['use_ps_gpu']:
1289
                    if self.role_id == 0:
1290
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1291
                        self._init_all_params(scopes, send_ctx, dense_map)
1292

1293 1294
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1295
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1296
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1297 1298
        fleet.util.barrier()

1299 1300
        if (
            self.context['ps_mode'] == DistributedMode.GEO
1301
            or self.is_heter_ps_mode
1302
        ):
1303 1304 1305 1306
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1307 1308 1309 1310 1311

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
1312 1313 1314 1315
            if (
                self.is_heter_ps_mode
                and self.role_maker._get_next_trainers() != []
            ):
Z
ziyoujiyi 已提交
1316 1317 1318 1319 1320 1321 1322 1323
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1324
                self._heter_client = HeterClient(
1325 1326
                    next_trainers, previous_trainers, self.role_maker._role_id()
                )  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1327

1328
    def _init_coordinator(self, scopes=None):
1329
        if self._coordinator is None:
1330 1331 1332 1333
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
1334 1335 1336
        self._coordinator.start_coordinator(
            self.coordinator_hosts[0], self.trainer_endpoints
        )
1337 1338

    def _make_fl_strategy(self):
1339
        if self._coordinator is None:
1340
            assert "Coordinator py object is null!"
1341 1342 1343
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1344
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1345
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1346 1347 1348 1349
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1350 1351
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1352

Z
ziyoujiyi 已提交
1353
        self._server = fluid.core.DistFleetWrapper()
1354 1355 1356 1357 1358 1359 1360
        self._server.init_server(
            server_desc,
            self.string_hosts,
            self.role_id,
            trainers,
            self._server_sub_program,
        )
Z
ziyoujiyi 已提交
1361

W
wangguanqun 已提交
1362
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
1363 1364 1365
        sparse_varnames = get_sparse_tablenames(
            self.origin_main_programs, False
        )
Z
ziyoujiyi 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1375 1376 1377 1378
                        "fleet.init server can only load sparse variables in {}".format(
                            distributed_varnames
                        )
                    )
Z
ziyoujiyi 已提交
1379 1380 1381 1382 1383
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1384
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1399 1400 1401
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1402
        if self.is_heter_ps_mode:
1403
            assert (
1404
                self._heter_client is not None
1405
            ), "heter client should not be None in heterps mode"
Z
ziyoujiyi 已提交
1406 1407 1408 1409 1410 1411 1412 1413
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1414
            from .utils.public import _get_varname_parts
1415

Z
ziyoujiyi 已提交
1416 1417 1418 1419
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1420
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1421 1422
                return False

1423 1424 1425 1426 1427
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
Z
ziyoujiyi 已提交
1428 1429 1430 1431 1432
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1433 1434 1435 1436 1437 1438 1439
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1440 1441 1442
    def _ps_save_dense_params(
        self, executor, dirname, scope, program, var_names=None
    ):
1443
        dense_map = get_the_one_recv_context(
1444 1445
            self.context, split_dense_table=self.is_heter_ps_mode
        )
1446 1447 1448
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1449 1450
            ep_list=self.endpoints,
        )
1451 1452 1453 1454 1455 1456
        if program is None or len(self.origin_main_programs) == 1:
            program = self.origin_main_programs[0]
        dense_var_names = self._pull_dense(program, scope, send_ctx, dense_map)
        save_var_names = dense_var_names if var_names is None else var_names
        vars = [program.global_block().var(i) for i in save_var_names]
        import paddle
1457

1458
        with paddle.static.scope_guard(scope):
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            paddle.static.save_vars(
                executor, "./", program, vars=vars, filename=dirname
            )

    def _save_sparse_params(
        self, executor, dirname, context, main_program, mode
    ):
        distributed_varnames = get_sparse_tablenames(
            self.origin_main_programs, True
        )
Z
ziyoujiyi 已提交
1469
        values = []
W
wangguanqun 已提交
1470
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1471 1472 1473 1474
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1475
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1476 1477 1478 1479 1480 1481 1482 1483
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

1484 1485 1486
    def _save_distributed_persistables(
        self, executor, dirname, main_program=None, mode=0, **kwargs
    ):
Z
ziyoujiyi 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
1505 1506
                "in fleet.save() function, executor must be as Executor type"
            )
Z
ziyoujiyi 已提交
1507 1508

        if main_program is None:
1509
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1510 1511 1512 1513 1514 1515 1516 1517

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._worker.save_all_model(dirname, mode)

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    def _ps_inference_save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names,
        target_vars,
        main_program=None,
        export_for_deployment=True,
        mode=0,
    ):
Z
ziyoujiyi 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
1540 1541
                "in fleet.save() function, executor must be as Executor type"
            )
Z
ziyoujiyi 已提交
1542 1543

        import paddle
1544 1545 1546 1547 1548 1549

        program = (
            self.origin_main_programs[0]
            if main_program is None
            else main_program
        )
1550 1551 1552
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

1563 1564 1565
        infer_program = paddle.static.normalize_program(
            program, feed_vars, target_vars
        )
Z
ziyoujiyi 已提交
1566 1567 1568

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1569
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1570 1571 1572 1573 1574 1575 1576
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1577 1578 1579 1580 1581
            split_dense_table=self.is_heter_ps_mode,
        )
        sparse_names = self._save_sparse_params(
            executor, dirname, sparses, main_program, mode
        )
Z
ziyoujiyi 已提交
1582

1583
        dense_map = get_the_one_recv_context(
1584 1585
            self.context, split_dense_table=self.is_heter_ps_mode
        )
1586
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1587 1588
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1589 1590
            ep_list=self.endpoints,
        )
1591
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1592 1593

        generate_vars = self.context[
1594 1595
            "user_defined_strategy"
        ].trainer_desc_configs["stat_var_names"]
Z
ziyoujiyi 已提交
1596 1597
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1598 1599 1600 1601 1602
            filter(
                TheOnePSRuntime.__exclude_vars(sparse_names),
                infer_program.list_vars(),
            )
        )
Z
ziyoujiyi 已提交
1603 1604

        for var in remaining_vars:
1605
            tensor = var.get_value(scope)
1606 1607 1608 1609 1610
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True,
            )
Z
ziyoujiyi 已提交
1611

Z
zhaocaibei123 已提交
1612
    def _save_cache_model(self, dirname, **kwargs):
1613
        mode = kwargs.get("mode", 1)
Z
zhaocaibei123 已提交
1614 1615 1616 1617 1618 1619 1620
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
1621
        # check cache threshold right or not
Z
zhaocaibei123 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

1636 1637 1638 1639 1640 1641
    def _check_save_pre_patch_done(self):
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            self._worker.check_save_pre_patch_done()
        fleet.util.barrier()

Z
ziyoujiyi 已提交
1642
    def _load_sparse_params(self, dirname, context, main_program, mode):
1643 1644 1645
        distributed_varnames = get_sparse_tablenames(
            self.origin_main_programs, True
        )
Z
ziyoujiyi 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

1656 1657 1658 1659 1660 1661 1662 1663
    def _ps_inference_load_inference_model(
        self, dirname, mode=0, main_program=None
    ):
        main_program = (
            self.origin_main_programs[0]
            if main_program is None
            else main_program
        )
1664 1665 1666
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1676 1677
            split_dense_table=self.is_heter_ps_mode,
        )
Z
ziyoujiyi 已提交
1678

1679 1680 1681
        sparse_varnames = self._load_sparse_params(
            dirname, sparses, main_program, mode
        )
Z
ziyoujiyi 已提交
1682

1683
        dense_map = get_the_one_recv_context(
1684 1685
            self.context, split_dense_table=self.is_heter_ps_mode
        )
1686 1687 1688
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1689 1690
            ep_list=self.endpoints,
        )
1691

Z
ziyoujiyi 已提交
1692
        recv_dense_varnames = []
1693
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1694 1695 1696 1697 1698
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1699 1700 1701 1702 1703
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars(),
            )
        )
Z
ziyoujiyi 已提交
1704

1705
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1706
        import paddle
1707

Z
ziyoujiyi 已提交
1708 1709 1710 1711
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1712
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1713

1714
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1715

1716
    def _save_one_table(self, table_id, path, mode):
1717
        fleet.util.barrier()
1718 1719 1720
        if self.role_maker._is_first_worker():
            self._worker.save_one_model(table_id, path, mode)
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1721

1722
    def _save_dense_params(self, *args, **kwargs):
1723
        fleet.util.barrier()
1724 1725 1726 1727 1728
        if self.role_maker._is_first_worker():
            self._ps_save_dense_params(*args, **kwargs)
        fleet.util.barrier()

    def _save_persistables(self, *args, **kwargs):
1729
        fleet.util.barrier()
1730 1731 1732 1733 1734
        if self.role_maker._is_first_worker():
            self._save_distributed_persistables(*args, **kwargs)
        fleet.util.barrier()

    def _save_inference_model(self, *args, **kwargs):
1735
        fleet.util.barrier()
1736 1737 1738 1739 1740
        if self.role_maker._is_first_worker():
            self._ps_inference_save_inference_model(*args, **kwargs)
        fleet.util.barrier()

    def _load_one_table(self, table_id, path, mode):
1741
        fleet.util.barrier()
1742 1743 1744 1745 1746
        if self.role_maker._is_first_worker():
            self._worker.load_one_table(table_id, path, mode)
        fleet.util.barrier()

    def _load_persistables(self, path, mode):
1747
        fleet.util.barrier()
1748 1749 1750 1751 1752
        if self.role_maker._is_first_worker():
            self._worker.load_model(path, mode)
        fleet.util.barrier()

    def _load_inference_model(self, path, mode):
1753
        fleet.util.barrier()
1754
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1755
            self._ps_inference_load_inference_model(path, mode)
1756
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1768
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1769 1770
                self.context,
                is_dense=False,
1771 1772
                split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            )
Z
ziyoujiyi 已提交
1773 1774 1775 1776

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()