test_adam_op.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
import unittest
import numpy as np
from op_test import OpTest


class TestAdamOp1(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

36 37
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, self.attrs)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

79 80
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOpMultipleSteps(OpTest):
    def setUp(self):
        '''Test Adam Operator with supplied attributes
        '''
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

    def test_check_output(self):
        for _ in range(self.num_steps):
126 127
            param_out, moment1_out, \
                moment2_out = adam_step(self.inputs, self.attrs)
128 129 130 131 132 133 134 135 136 137 138 139 140 141

            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
                'ParamOut': param_out
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
142 143 144 145

            # Update powers of Beta1 and Beta2 for next time step
            self.inputs['Beta1Pow'] *= self.attrs['beta1']
            self.inputs['Beta2Pow'] *= self.attrs['beta1']
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
174
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
175
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
176
    return param_out, moment1_out, moment2_out
177 178


T
wip  
typhoonzero 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

    moment1_out = np.array([height, row_numel])
    moment2_out = np.array([height, row_numel])
    param_out = np.array([height, row_numel])

    for idx, row_id in enumerate(rows):
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
                                                         ) * np_grad[idx]
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(np_grad[idx])
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
        param_out[row_id] = param[row_id] - lr_t * (moment1_out / (
            np.sqrt(moment2_out) + epsilon))
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
    def setup(self, scope, place):
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4

        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        self.dense_inputs = {
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
            'Beta1Pow': np.array([0.9**10]).astype("float32"),
            'Beta2Pow': np.array([0.999**10]).astype("float32"),
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

        param_out, mom1, mom2 = adam_step_sparse(
            self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
        self.outputs = {
            "Param": param_out,
            "Moment1Out": mom1,
            "Moment2Out": mom2
        }

    def check_with_place(self, place):
        scope = core.Scope()
        self.setup(scope, place)

        op_args = dict()
        for key, np_array in self.dense_inputs.iteritems():
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
        sgd_op = Operator("adam", **op_args)
        sgd_op.run(scope, place)

        for key, np_array in self.outputs.iteritems():
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
            actual.reshape([actual.size()])
            np_array.reshape([np_array.size()])
            i = 0
            while i < actual.size():
                self.assertAlmostEqual(actual[i], np_array[i])
                i += 1

        # # rows[0] = 0, 5.0 - 2.0 * 2.0
        # self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # # rows[0] = 0, 5.0 - 2.0 * 1.0
        # self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # # 5.0 - 2.0 * 0.0
        # self.assertAlmostEqual(5.0, result_array[1, 0])
        # # rows[1] = 4, 5.0 - 2.0 * 1.0
        # self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # # 5.0 - 2.0 * 0.0
        # self.assertAlmostEqual(5.0, result_array[5, 8])
        # # rows[2] = 7, 5.0 - 2.0 * 1.0
        # self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # # rows[2] = 7, 5.0 - 2.0 * 4.0
        # self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compile_gpu():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


304 305
if __name__ == "__main__":
    unittest.main()