op_meta_info.h 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
#include <vector>

#include <boost/any.hpp>

#include "paddle/fluid/extension/include/tensor.h"

/**
 * Op Meta Info Related Define.
 *
 * Used to maintain operator core information.
 *
 */

namespace paddle {
namespace framework {
class OpMetaInfoHelper;
}  // namespace framework

using Tensor = paddle::Tensor;

#define PD_DISABLE_COPY_AND_ASSIGN(classname)      \
 private:                                          \
  classname(const classname&) = delete;            \
  classname(classname&&) = delete;                 \
  classname& operator=(const classname&) = delete; \
  classname& operator=(classname&&) = delete

///////////////// Util Define and Function ////////////////

inline std::string Grad(const std::string& var_name) {
  std::string result;
  result.reserve(var_name.size() + 5U);
  result += var_name;
  result += "@GRAD";
  return result;
}

////////////////////// Kernel Function (PD_KERNEL) ////////////////////////

// Record Op kernel core function
using KernelFunc = std::vector<Tensor> (*)(std::vector<Tensor> inputs,
                                           std::vector<boost::any> attrs);

template <typename T>
struct TypeTag {};

template <typename F, F f>
struct KernelFuncImpl;

template <typename Return, typename... Args, Return (*impl_fn)(Args...)>
struct KernelFuncImpl<Return (*)(Args...), impl_fn> {
  static Return Compute(std::vector<Tensor> inputs,
                        std::vector<boost::any> attrs) {
    return ComputeCallHelper<Args..., TypeTag<int>>::template Compute<0, 0>(
        inputs, attrs);
  }

 private:
  template <typename... RemainingArgs>
  struct ComputeCallHelper;

  // for Tensor input
  template <typename... Tail>
  struct ComputeCallHelper<const Tensor&, Tail...> {
    template <int in_idx, int attr_idx, typename... PreviousArgs>
    static Return Compute(std::vector<Tensor> inputs,
                          std::vector<boost::any> attrs,
                          const PreviousArgs&... pargs) {
      static_assert(attr_idx == 0,
                    "Input tensor should appear before attributes.");
      const Tensor& arg = inputs[in_idx];
      return ComputeCallHelper<Tail...>::template Compute<in_idx + 1, attr_idx>(
          inputs, attrs, pargs..., arg);
    }
  };

  // TODO(chenweihang): add support for attribute input
  // int attribute input (not used now)
  template <typename... Tail>
  struct ComputeCallHelper<int, Tail...> {
    template <int in_idx, int attr_idx, typename... PreviousArgs>
    static Return Compute(std::vector<Tensor> inputs,
                          std::vector<boost::any> attrs,
                          const PreviousArgs&... pargs) {
      try {
        int arg = boost::any_cast<int>(attrs[attr_idx]);
        return ComputeCallHelper<Tail...>::template Compute<in_idx,
                                                            attr_idx + 1>(
            inputs, attrs, pargs..., arg);
      } catch (boost::bad_any_cast&) {
        throw std::runtime_error(
            "Attribute cast error in custom operator. Expected int value.");
      }
    }
  };

  // end: base template
  template <typename T>
  struct ComputeCallHelper<TypeTag<T>> {
    template <int in_idx, int attr_idx>
    static Return Compute(std::vector<Tensor> inputs,
                          std::vector<boost::any> attrs, const Args&... args) {
      return impl_fn(args...);
    }
  };
};

#define PD_KERNEL(...) \
  ::paddle::KernelFuncImpl<decltype(&__VA_ARGS__), &__VA_ARGS__>::Compute

/////////////// InferShape Function (PD_INFER_SHAPE) ///////////////

// Record Op infershape core function
using InferShapeFunc = std::vector<std::vector<int64_t>> (*)(
    std::vector<std::vector<int64_t>> input_shapes);

template <typename F, F f>
struct InferShapeFuncImpl;

template <typename Return, typename... Args, Return (*impl_fn)(Args...)>
struct InferShapeFuncImpl<Return (*)(Args...), impl_fn> {
  static Return InferShape(std::vector<std::vector<int64_t>> input_shapes) {
    return InferShapeCallHelper<Args..., TypeTag<int>>::template InferShape<0>(
        input_shapes);
  }

 private:
  template <typename... RemainingArgs>
  struct InferShapeCallHelper;

  // only one type input: std::vector<int64_t>
  template <typename... Tail>
  struct InferShapeCallHelper<std::vector<int64_t>, Tail...> {
    template <int in_idx, typename... PreviousArgs>
    static Return InferShape(std::vector<std::vector<int64_t>> input_shapes,
                             const PreviousArgs&... pargs) {
      std::vector<int64_t> arg = input_shapes[in_idx];
      return InferShapeCallHelper<Tail...>::template InferShape<in_idx + 1>(
          input_shapes, pargs..., arg);
    }
  };

  // end: base template
  template <typename T>
  struct InferShapeCallHelper<TypeTag<T>> {
    template <int in_idx>
    static Return InferShape(std::vector<std::vector<int64_t>> input_shapes,
                             const Args&... args) {
      return impl_fn(args...);
    }
  };
};

#define PD_INFER_SHAPE(...) \
  ::paddle::InferShapeFuncImpl<decltype(&__VA_ARGS__), &__VA_ARGS__>::InferShape

/////////////// InferDataType Function (PD_INFER_DTYPE) ///////////////

// Record Op Infer dtype core function
using InferDtypeFunc =
    std::vector<DataType> (*)(std::vector<DataType> input_dtypes);

template <typename F, F f>
struct InferDtypeFuncImpl;

template <typename Return, typename... Args, Return (*impl_fn)(Args...)>
struct InferDtypeFuncImpl<Return (*)(Args...), impl_fn> {
  static Return InferDtype(std::vector<DataType> input_dtypes) {
    return InferDtypeCallHelper<Args..., TypeTag<int>>::template InferDtype<0>(
        input_dtypes);
  }

 private:
  template <typename... RemainingArgs>
  struct InferDtypeCallHelper;

  // Only one type input now: DataType
  template <typename... Tail>
  struct InferDtypeCallHelper<DataType, Tail...> {
    template <int in_idx, typename... PreviousArgs>
    static Return InferDtype(std::vector<DataType> input_dtypes,
                             const PreviousArgs&... pargs) {
      DataType arg = input_dtypes[in_idx];
      return InferDtypeCallHelper<Tail...>::template InferDtype<in_idx + 1>(
          input_dtypes, pargs..., arg);
    }
  };

  // end: base template
  template <typename T>
  struct InferDtypeCallHelper<TypeTag<T>> {
    template <int in_idx>
    static Return InferDtype(std::vector<DataType> input_dtypes,
                             const Args&... args) {
      return impl_fn(args...);
    }
  };
};

#define PD_INFER_DTYPE(...) \
  ::paddle::InferDtypeFuncImpl<decltype(&__VA_ARGS__), &__VA_ARGS__>::InferDtype

////////////////////// Op Meta Info //////////////////////

class OpMetaInfo {
 public:
  explicit OpMetaInfo(const std::string& op_name) : name_(op_name) {}
  OpMetaInfo& Inputs(std::vector<std::string>&& inputs);
  OpMetaInfo& Outputs(std::vector<std::string>&& outputs);
  OpMetaInfo& SetKernelFn(KernelFunc&& func);
  OpMetaInfo& SetInferShapeFn(InferShapeFunc&& func);
  OpMetaInfo& SetInferDtypeFn(InferDtypeFunc&& func);

 private:
  friend class framework::OpMetaInfoHelper;

  // 1. desc info
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;

  // 2. func info
  KernelFunc kernel_fn_;
  InferShapeFunc infer_shape_fn_;
  InferDtypeFunc infer_dtype_fn_;
};

//////////////// Op Meta Info Map /////////////////

class OpMetaInfoMap {
 public:
  // this function's impl should keep in header file.
  // if move to cc file, meta info can not be added
  // into map
  static OpMetaInfoMap& Instance() {
    static OpMetaInfoMap g_custom_op_meta_info_map;
    return g_custom_op_meta_info_map;
  }

  std::vector<OpMetaInfo>& operator[](const std::string& name);

  const std::unordered_map<std::string, std::vector<OpMetaInfo>>& GetMap()
      const;

 private:
  OpMetaInfoMap() = default;
  std::unordered_map<std::string, std::vector<OpMetaInfo>> map_;

  PD_DISABLE_COPY_AND_ASSIGN(OpMetaInfoMap);
};

//////////////// Op Meta Info Builder /////////////////

class OpMetaInfoBuilder {
 public:
  explicit OpMetaInfoBuilder(std::string&& name);
  OpMetaInfoBuilder& Inputs(std::vector<std::string>&& inputs);
  OpMetaInfoBuilder& Outputs(std::vector<std::string>&& outputs);
  OpMetaInfoBuilder& SetKernelFn(KernelFunc&& func);
  OpMetaInfoBuilder& SetInferShapeFn(InferShapeFunc&& func);
  OpMetaInfoBuilder& SetInferDtypeFn(InferDtypeFunc&& func);
  OpMetaInfoBuilder& SetBackwardOp(const std::string& bwd_op_name);

 private:
  // Forward Op name
  std::string name_;
  // Point to the currently constructed op meta info
  OpMetaInfo* info_ptr_;
};

/////////////////////// Op register API /////////////////////////

// For inference: compile directly with framework
293
// Call after PD_BUILD_OP(...)
294 295
void RegisterAllCustomOperator();

296 297 298 299 300
// Using this api to load compiled custom operator's dynamic library and
// register Custom
// Operator into it
void LoadCustomOperatorLib(const std::string& dso_name);

301 302
/////////////////////// Op register Macro /////////////////////////

303 304
#define PD_BUILD_OP_WITH_COUNTER(op_name, counter)                  \
  static ::paddle::OpMetaInfoBuilder __op_meta_info_##counter##__ = \
305 306
      ::paddle::OpMetaInfoBuilder(op_name)

307 308 309 310 311
#define PD_BUILD_OP_INNER(op_name, counter) \
  PD_BUILD_OP_WITH_COUNTER(op_name, counter)

#define PD_BUILD_OP(op_name) PD_BUILD_OP_INNER(op_name, __COUNTER__)

312 313 314 315 316 317 318 319 320 321 322 323 324 325
}  // namespace paddle

///////////////////// C API ///////////////////

#ifdef __cplusplus
extern "C" {
#endif

// C-API to get global OpMetaInfoMap.
paddle::OpMetaInfoMap& PD_GetOpMetaInfoMap();

#ifdef __cplusplus
}
#endif