heter_comm.h 7.8 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#include <thread>
T
Thunderbrook 已提交
17
#include <vector>
18
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
19
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
T
Thunderbrook 已提交
20
#include "paddle/fluid/platform/cuda_device_guard.h"
21
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
22
#include "thrust/pair.h"
23
#elif defined(PADDLE_WITH_XPU_KP)
24
// #include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
25 26 27 28 29 30 31 32 33 34
#include <xpu/runtime.h>
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif

#include "paddle/fluid/framework/fleet/heter_ps/hashtable.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
35

T
Thunderbrook 已提交
36
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace framework {

template <typename KeyType, typename ValType, typename GradType>
class HeterComm {
 public:
  HeterComm(size_t capacity, std::shared_ptr<HeterPsResource> resource);
  virtual ~HeterComm();
  HeterComm(const HeterComm&) = delete;
  HeterComm& operator=(const HeterComm&) = delete;

  void split_input_to_shard(KeyType* d_keys, int* d_idx_ptr, size_t len,
                            int* left, int* right, int gpu_num);
  void merge_grad(int gpu_num, KeyType* d_keys, GradType* d_grads, size_t len,
52
                  int& uniq_len);  // NOLINT
T
Thunderbrook 已提交
53 54 55 56 57 58 59
  void pull_sparse(int num, KeyType* d_keys, ValType* d_vals, size_t len);
  void build_ps(int num, KeyType* h_keys, ValType* h_vals, size_t len,
                size_t chunk_size, int stream_num);
  void dump();
  void show_one_table(int gpu_num);
  int get_index_by_devid(int devid);

60
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
61 62
  template <typename Sgd>
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len,
63
                   Sgd& sgd);  // NOLINT
64 65 66 67
#elif defined(PADDLE_WITH_XPU_KP)
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len);
#endif

68 69 70 71 72
#if defined(PADDLE_WITH_XPU_KP)
  void set_sparse_sgd(const OptimizerConfig& optimizer_config);
  void set_embedx_sgd(const OptimizerConfig& optimizer_config);
#endif

73
  int log2i(int x);
T
Thunderbrook 已提交
74

75 76 77 78 79
  template <typename DstPlace, typename SrcPlace, typename StreamType>
  void memory_copy(DstPlace dst_place, void* dst, SrcPlace src_place,
                   const void* src, size_t count, StreamType stream = 0);

#if defined(PADDLE_WITH_CUDA)
80 81
  template <typename Sgd>
  void push_sparse_multi_node(int num, KeyType* d_keys, GradType* d_grads,
82
                              size_t len, Sgd& sgd);  // NOLINT
83 84 85

  template <typename Sgd>
  void update_one_table(int num, KeyType* d_keys, GradType* d_grads, size_t len,
86
                        Sgd& sgd);  // NOLINT
87 88 89 90 91 92 93 94 95 96 97 98 99 100

  int gather_one_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                           int len);

  int gather_multi_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                             int len);

  void set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms,
                              const std::vector<ncclComm_t>& inter_comms,
                              int comm_size) {
    nccl_inner_comms_ = inner_comms;
    nccl_inter_comms_ = inter_comms;
    node_size_ = comm_size;
  }
101
#endif
102

103 104 105 106
  bool need_transfer(int send_id, int receive_id) {
    return ((send_id / 4 != receive_id / 4) && (send_id + 4) % 8 != receive_id);
  }

T
Thunderbrook 已提交
107 108
  // void dump_to_cpu(int index);

109 110
  int get_transfer_devid(int send_id) { return (send_id + 4) % 8; }

111 112
  void end_pass();

113
  struct Node {
114 115
    ppStream in_stream;
    ppStream out_stream;
116 117 118 119 120
    char* key_storage;
    char* val_storage;
    int sync;
    int key_bytes_len;
    int val_bytes_len;
121
    int dev_num;
122 123 124 125 126 127
  };

  struct Path {
    std::vector<Node> nodes_;
  };

128 129 130 131 132 133
  struct CopyTask {
    Path* path;
    int step;
    CopyTask(Path* path_, int step_) : path(path_), step(step_) {}
  };

134 135 136 137 138 139 140
  struct LocalStorage {
    LocalStorage() {}
    void init(int size, int dev_id) {
      place_ = platform::CUDAPlace(dev_id);
      alloc(size, true);
    }

141
    void alloc(size_t size, bool force = false) {
142 143 144
      if (force || size > all_keys_mem->size()) {
        all_keys_mem.reset();
        all_grads_mem.reset();
145 146
        all_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        all_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
147 148 149 150 151 152
        all_keys = reinterpret_cast<KeyType*>(all_keys_mem->ptr());
        all_grads = reinterpret_cast<GradType*>(all_grads_mem->ptr());
      }
      if (force || size > local_keys_mem->size()) {
        local_keys_mem.reset();
        local_grads_mem.reset();
153 154
        local_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        local_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
155 156 157 158 159
        local_keys = reinterpret_cast<KeyType*>(local_keys_mem->ptr());
        local_grads = reinterpret_cast<GradType*>(local_grads_mem->ptr());
      }
    }

160
#if defined(PADDLE_WITH_CUDA)
161
    platform::CUDAPlace place_;
F
Fan Zhang 已提交
162

163 164 165
#elif defined(PADDLE_WITH_XPU_KP)
    platform::XPUPlace place_;
#endif
166 167
    std::shared_ptr<memory::Allocation> all_keys_mem;
    std::shared_ptr<memory::Allocation> all_grads_mem;
F
Fan Zhang 已提交
168

169 170 171 172 173 174 175 176 177
    KeyType* all_keys;
    GradType* all_grads;

    std::shared_ptr<memory::Allocation> local_keys_mem;
    std::shared_ptr<memory::Allocation> local_grads_mem;
    KeyType* local_keys;
    GradType* local_grads;
  };

178
  void init_path();
T
Thunderbrook 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  template <typename StreamType>
  void sync_stream(const StreamType& stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(stream));
#endif
  }

  template <typename StreamType>
  void create_stream(StreamType* stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_create(stream));
#endif
  }

  template <typename StreamType>
  void destroy_stream(StreamType stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_destroy(stream));
#endif
  }

T
Thunderbrook 已提交
207 208
  void create_storage(int start_index, int end_index, int keylen, int vallen);
  void destroy_storage(int start_index, int end_index);
209 210 211 212
  void walk_to_dest(int start_index, int gpu_num, int* h_left, int* h_right,
                    KeyType* src_key, GradType* src_val);
  void walk_to_src(int start_index, int gpu_num, int* h_left, int* h_right,
                   ValType* src_val);
T
Thunderbrook 已提交
213

S
seemingwang 已提交
214
 protected:
T
Thunderbrook 已提交
215 216 217
  using Table = HashTable<KeyType, ValType>;
  std::vector<Table*> tables_;
  std::shared_ptr<HeterPsResource> resource_;
218
  std::vector<std::vector<Path>> path_;
S
seemingwang 已提交
219 220
  float load_factor_{0.75};
  int block_size_{256};
S
seemingwang 已提交
221
  std::unique_ptr<HeterCommKernel> heter_comm_kernel_;
S
seemingwang 已提交
222 223

 private:
S
seemingwang 已提交
224
  int topo_aware_{0};
225 226
  std::vector<LocalStorage> storage_;
  int feanum_{1800 * 2048};
T
Thunderbrook 已提交
227
  int multi_node_{0};
228 229 230
  int node_size_;

#if defined(PADDLE_WITH_CUDA)
231 232
  std::vector<ncclComm_t> nccl_inner_comms_;
  std::vector<ncclComm_t> nccl_inter_comms_;
T
Thunderbrook 已提交
233
  std::vector<std::shared_ptr<cub::CachingDeviceAllocator>> allocators_;
234
#endif
T
Thunderbrook 已提交
235 236 237 238
};

}  // end namespace framework
}  // end namespace paddle
F
Fan Zhang 已提交
239

T
Thunderbrook 已提交
240
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h"
F
Fan Zhang 已提交
241

T
Thunderbrook 已提交
242
#endif