kernel_dispatch.h 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26 27
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
28 29
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
30

Y
YuanRisheng 已提交
31
// TODO(chenweihang): split Key, Kernel, Factory into diff files
32
#include "paddle/phi/core/kernel_factory.h"
33 34 35 36 37

namespace paddle {
namespace experimental {

namespace detail {
38
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
39
std::size_t CountLeadingZeros(uint32_t val);
40 41
}  // namespace detail

42
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
43

44
enum class KernelType {
45 46 47 48
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
49 50
};

51 52 53 54 55 56 57
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
58
  phi::KernelKey GetHighestPriorityKernelKey() {
59
    return phi::KernelKey(static_cast<Backend>(32 - detail::CountLeadingZeros(
60 61 62
                                                        backend_set.bitset())),
                          layout,
                          dtype);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
93 94 95
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
96 97 98

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
99
  inline void AssignKernelKeySet(const phi::TensorBase& tensor) {
100 101
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
102 103 104
    phi::DataLayout tensor_layout = tensor.layout();
    key_set.layout =
        tensor_layout > key_set.layout ? tensor_layout : key_set.layout;
105 106
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
107 108 109 110
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
111 112
  }

113 114 115 116 117 118
  void operator()(const Tensor& x) {
    const auto* tensor = x.impl().get();
    if (tensor) {
      AssignKernelKeySet(*tensor);
    }
  }
119

120
  void operator()(const std::vector<Tensor>& x) {
121 122 123 124
    if (!x.empty()) {
      const phi::TensorBase& tensor = *x.at(0).impl();
      AssignKernelKeySet(tensor);
    }
125 126
  }

127 128
  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
129 130 131 132 133
      const phi::TensorBase& tensor = *(x.get_ptr()->impl());
      AssignKernelKeySet(tensor);
    }
  }

134 135 136 137 138 139 140
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

141 142 143 144 145 146
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
147
    if (phi::SelectedRows::classof(x.impl().get())) {
148
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
149 150 151 152
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
153 154 155 156 157 158 159 160 161 162
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

163 164 165 166 167 168 169
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

170 171 172 173 174
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

175 176 177 178 179
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

180
Backend ParseBackend(const Place& place);
181 182 183 184 185
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
186
  return static_cast<Backend>(32 -
187 188
                              detail::CountLeadingZeros(backend_set.bitset()));
}
189
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
190 191 192 193 194

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

195 196
}  // namespace experimental
}  // namespace paddle