graph_send_recv_funcs.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "paddle/phi/kernels/graph_send_recv_kernel.h"

#include <thrust/device_vector.h>
#include <thrust/fill.h>
#include <algorithm>
#include <vector>

#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/hostdevice.h"

namespace phi {

template <typename T, typename IndexT>
struct GraphSendRecvSumCUDAFunctor {
  DEVICE inline void operator()(const T* params,
                                T* output,
                                const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicAdd(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT>
struct GraphSendRecvMaxCUDAFunctor {
  DEVICE inline void operator()(const T* params,
                                T* output,
                                const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicMax(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT>
struct GraphSendRecvMinCUDAFunctor {
  DEVICE inline void operator()(const T* params,
                                T* output,
                                const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicMin(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT, typename Functor>
__global__ void GraphSendRecvCUDAKernel(const T* params,
                                        const IndexT* src_indices,
                                        const IndexT* dst_indices,
                                        T* output,
                                        size_t index_size,
                                        size_t slice_size,
                                        Functor functor) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    functor(params, output, in_i, out_i);
  }
}

// For max
template <typename T>
__global__ void InputResetMaxCUDAKernel(T* output,
                                        size_t input_size,
                                        size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    if (*(output + i) == std::numeric_limits<T>::min()) {
      *(output + i) = 0;
    }
  }
}

// For min
template <typename T>
__global__ void InputResetMinCUDAKernel(T* output,
                                        size_t input_size,
                                        size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    if (*(output + i) == std::numeric_limits<T>::max()) {
      *(output + i) = 0;
    }
  }
}

// Get dst_count
template <typename T, typename IndexT>
__global__ void ComputeCountCUDAKernel(int32_t* count,
                                       const IndexT* dst_indices,
                                       size_t index_size) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size, int64_t) {
    IndexT dst_i = dst_indices[i];
    paddle::platform::CudaAtomicAdd(count + dst_i, 1);
  }
}

// For forward mean
template <typename T>
__global__ void ManipulateMeanCUDAKernel(T* output,
                                         int32_t* count,
                                         size_t input_size,
                                         size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    int64_t c_index = i / slice_size;
    if (*(count + c_index) > 1) {
      *(output + i) = *(output + i) / *(count + c_index);
    }
  }
}

// For backward mean
template <typename T, typename IndexT>
__global__ void ManipulateMeanGradCUDAKernel(const T* params,
                                             const IndexT* src_indices,
                                             const IndexT* dst_indices,
                                             T* output,
                                             size_t index_size,
                                             size_t slice_size,
                                             const int32_t* dst_count) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    paddle::platform::CudaAtomicAdd(output + out_i,
                                    *(params + in_i) / dst_count[src_i]);
  }
}

// For backward min and max
template <typename T, typename IndexT>
__global__ void ManipulateMinMaxGradCUDAKernel(const T* params,
                                               const IndexT* src_indices,
                                               const IndexT* dst_indices,
                                               T* output,
                                               size_t index_size,
                                               size_t slice_size,
                                               const T* ptr_input,
                                               const T* ptr_output) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    paddle::platform::CudaAtomicAdd(
        output + out_i,
        *(params + in_i) * (*(ptr_input + out_i) == *(ptr_output + in_i)));
  }
}

}  // namespace phi