utils.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
import paddle
from ...utils import hybrid_parallel_util as hp_util

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
__all__ = [
    'get_tensor_bytes',
    'is_float_tensor',
]

FLOAT_TYPES = [
    paddle.float16,
    paddle.float32,
    paddle.float64,
]


def is_float_tensor(tensor):
    """Is a float tensor"""
    return tensor.dtype in FLOAT_TYPES
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85


def get_tensor_bytes(tensor):
    """Get the bytes a tensor occupied."""
    elem_size = None
    if tensor.dtype == paddle.float32:
        elem_size = 4
    elif tensor.dtype == paddle.float64:
        elem_size = 8
    elif tensor.dtype == paddle.int64:
        elem_size = 8
    elif tensor.dtype == paddle.int32:
        elem_size = 4
    elif tensor.dtype == paddle.float16:
        elem_size = 2
    elif tensor.dtype == paddle.int8:
        elem_size = 1
    else:
        raise ValueError("unknown data type: {}".format(tensor.dtype))
    return tensor.numel() * elem_size


class Generator():
    def __init__(self, micro_batches, stages, stage_id):
        __metaclass__ = abc.ABCMeta

        self.micro_batches = micro_batches
        self.stages = stages
        self.stage_id = stage_id
        self.prev_stage = self.stage_id - 1
        self.next_stage = self.stage_id + 1

    @abc.abstractmethod
    def generate(self):
        pass

    def __iter__(self):
        self.iter = None
        return self

    def __next__(self):
        if self.iter is None:
            self.iter = self.generate()
        return next(self.iter)


class TrainGenerator(Generator):
    def generate(self):
        startup_steps = self.stages - self.stage_id - 1
        cmds = []
        forward_steps = 0
        backward_steps = 0
86 87 88 89 90 91 92 93 94 95 96 97
        #while (forward_steps < startup_steps):
        #    cmds.append(Forward(cache_id=forward_steps))
        #    forward_steps += 1
        #while (forward_steps < self.micro_batches):
        #    cmds.append(Forward(cache_id=forward_steps))
        #    forward_steps += 1
        #    cmds.append(Backward(cache_id=backward_steps))
        #    backward_steps += 1
        #while (backward_steps < self.micro_batches):
        #    cmds.append(Backward(cache_id=backward_steps))
        #    backward_steps += 1
        #cmds.append(Optimize())
98
        while (forward_steps < self.micro_batches):
99
            cmds.append(Forward(cache_id=forward_steps))
100 101
            forward_steps += 1
        while (backward_steps < self.micro_batches):
102
            cmds.append(Backward(cache_id=backward_steps))
103
            backward_steps += 1
104
        cmds.append(Optimize())
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        yield cmds


class Command:
    def __init__(self, **kwargs):
        self.name = self.__class__.__name__
        self.kwargs = kwargs
        for key, val in kwargs.items():
            setattr(self, key, val)

    def __repr__(self):
        return hp_util.call_to_str(self.name, **self.kwargs)


class Optimize(Command):
    pass


class Forward(Command):
    pass


class Backward(Command):
    pass