layer.py 10.5 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75

L
Luo Tao 已提交
76 77
import activation
import attr
Q
qiaolongfei 已提交
78
import data_type
Q
qiaolongfei 已提交
79

Q
qiaolongfei 已提交
80 81
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
L
Luo Tao 已提交
82 83
    'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
Q
qiaolongfei 已提交
84
    'sum_cost', 'huber_cost', 'memory', 'embedding', 'recurrent_group'
Q
qiaolongfei 已提交
85 86
]

Q
qiaolongfei 已提交
87

Q
qiaolongfei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
103
class Layer(object):
Q
qiaolongfei 已提交
104
    def __init__(self, name, parent_layers, step_input=None):
Q
qiaolongfei 已提交
105
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
106 107
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
108
        self.step_input = step_input
Q
qiaolongfei 已提交
109
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
110 111 112 113 114 115

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
116 117
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
118
                              collections.Sequence):
Q
qiaolongfei 已提交
119
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
120 121
                    context=context)
            else:
Q
qiaolongfei 已提交
122 123
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
Q
qiaolongfei 已提交
124 125
                if layer_name == "input" and self.step_input is not None:
                    v1_layer.insert(0, self.step_input)
Q
qiaolongfei 已提交
126
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
127

Q
qiaolongfei 已提交
128 129 130 131
        # memory may have the same name with some layer
        if isinstance(self, MemoryV2):
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
132 133 134 135 136 137 138 139
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
140
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
141 142 143 144 145
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
146
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
147
        def __init__(self, name=None, step_input=None, **kwargs):
Q
qiaolongfei 已提交
148 149 150
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
151 152
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
153 154 155 156 157

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
158
            super(V2LayerImpl, self).__init__(name, parent_layers, step_input)
Q
qiaolongfei 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
172
    return V2LayerImpl
Q
qiaolongfei 已提交
173 174


Q
qiaolongfei 已提交
175 176 177 178 179 180 181
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
182
    def __init__(self, name, type, **kwargs):
183
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
184

Q
qiaolongfei 已提交
185
        self.type = type
Q
qiaolongfei 已提交
186 187
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
188 189 190 191 192

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
193
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
194 195
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
196 197
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
198 199 200
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
        self.__kwargs__ = kwargs
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.memory(name=self.name, size=self.size, **args)


Q
qiaolongfei 已提交
217
data = DataLayerV2
Q
qiaolongfei 已提交
218 219
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
220
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
221
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
222 223
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
224 225 226 227 228
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
229 230 231 232
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
233 234 235 236 237 238 239
embedding = __convert_to_v2__(
    'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
    'last_seq', name_prefix='last_seq', parent_names=['input'])
recurrent_group = __convert_to_v2__(
    'recurrent_group', name_prefix='recurrent_layer', parent_names=['input'])
memory = MemoryV2
Q
qiaolongfei 已提交
240

L
Luo Tao 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
259 260

if __name__ == '__main__':
261 262
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
L
Luo Tao 已提交
263 264 265
    weight = data(name='weight', type=data_type.dense_vector(10))
    score = data(name='score', type=data_type.dense_vector(1))

L
Luo Tao 已提交
266 267 268 269 270
    hidden = fc(input=pixel,
                size=100,
                act=activation.Sigmoid(),
                param_attr=attr.Param(name='hidden'))
    inference = fc(input=hidden, size=10, act=activation.Softmax())
Q
qiaolongfei 已提交
271 272
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
273 274 275 276 277 278 279 280 281 282
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
Q
qiaolongfei 已提交
283

Q
qiaolongfei 已提交
284 285 286 287 288
    # print parse_network(cost1)
    # print parse_network(cost2)
    # print parse_network(cost1, cost2)
    # print parse_network(cost2)
    # print parse_network(inference, maxid)
Q
qiaolongfei 已提交
289
    print parse_network(cost1, cost2)
L
Luo Tao 已提交
290 291 292
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
Q
qiaolongfei 已提交
293
    print parse_network(inference, maxid)