ptq.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import copy
17
import os
18 19 20
import numpy as np

import paddle
21
import paddle.nn.quant.quant_layers as quant_layers
22
from paddle.fluid.log_helper import get_logger
23
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
24

X
XGZhang 已提交
25
from . import fuse_utils
26 27 28
from . import utils
from . import ptq_hooks
from . import ptq_config
29
from . import ptq_quantizer
30 31 32 33
from .ptq_registry import PTQRegistry

__all__ = ['ImperativePTQ']

34 35 36
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
37 38 39 40


class ImperativePTQ(object):
    """
41
    Static post training quantization.
42 43 44 45 46
    """

    def __init__(self, quant_config=ptq_config.default_ptq_config):
        """
        Constructor.
47

48
        Args:
49 50
            quant_config(PTQConfig): the config of post training quantization.
                The config has weight_quantizer and activation_quantizer.
51 52
                In default, the weight_quantizer is PerChannelAbsmaxQuantizer
                and the activation_quantizer is KLQuantizer.
53 54 55 56 57 58 59
        """
        super(ImperativePTQ, self).__init__()

        assert isinstance(quant_config, ptq_config.PTQConfig)

        self._quant_config = quant_config

X
XGZhang 已提交
60
    def quantize(self, model, inplace=False, fuse=False, fuse_list=None):
61
        """
62
        Add quant config and hook to the target layer.
63 64 65

        Args:
            model(paddle.nn.Layer): The model to be quantized.
66 67
            inplace(bool): Whether apply quantization to the input model.
                           Default: False.
X
XGZhang 已提交
68 69 70 71 72 73 74 75
            fuse(bool): Whether to fuse layers.
                        Default: False.
            fuse_list(list): The layers' names to be fused. For example,
                "fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
                A TypeError would be raised if "fuse" was set as
                True but "fuse_list" was None.
                Default: None.
        Return
76
            quantized_model(paddle.nn.Layer): The quantized model.
77
        """
78 79 80
        assert isinstance(
            model, paddle.nn.Layer
        ), "The model must be the instance of paddle.nn.Layer."
81
        if not inplace:
82
            model = copy.deepcopy(model)
X
XGZhang 已提交
83 84 85
        if fuse:
            model.eval()
            model = fuse_utils.fuse_layers(model, fuse_list)
86
        for name, layer in model.named_sublayers():
87 88 89 90 91
            if (
                PTQRegistry.is_supported_layer(layer)
                and utils.is_leaf_layer(layer)
                and not self._is_skip_layer(layer)
            ):
92 93

                # Add quant config
94
                quant_config = copy.deepcopy(self._quant_config)
95 96
                if PTQRegistry.is_simulated_quant_layer(layer):
                    quant_config.enable_in_act_quantizer = True
97 98
                layer._quant_config = quant_config

99
                # register hook
100
                hook = ptq_hooks.quant_forward_post_hook
101 102
                quant_hook_handle = layer.register_forward_post_hook(hook)
                quant_config.quant_hook_handle = quant_hook_handle
103
                layer._forward_post_hooks.move_to_end(
104 105
                    quant_hook_handle._hook_id, last=False
                )
106

107
        return model
108

109
    def save_quantized_model(self, model, path, input_spec=None, **config):
110
        """
111 112
        1. Convert the quantized model
        2. Call jit.save to save the inference model
113
        3. Post process the inference model.
114 115

        Args:
116
            model (Layer): The model to be saved.
117
            path (str): The path prefix to save model. The format is
118 119 120
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
121
                InputSpec or example Tensor. If None, all input variables of
122 123
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
124
            **config (dict, optional): Other save configuration options for
125 126 127 128 129 130 131
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
                The following options are currently supported:
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
132
                If the provided ``output_spec`` list is not all output variables,
133
                the saved model will be pruned according to the given
134
                ``output_spec`` list.
135

136
        Returns:
137
            None
138
        """
139

140 141 142
        assert isinstance(
            model, paddle.nn.Layer
        ), "The model must be the instance of paddle.nn.Layer."
143
        is_postprocess = config.get('postprocess', True)
144
        config.pop('postprocess', None)
145 146 147 148 149

        # Convert and save dygraph quantized model
        self._convert(model)

        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
150 151
        if not is_postprocess:
            return
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

        # Load inference program
        is_dynamic_mode = False
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

        place = paddle.CPUPlace()
        scope = paddle.static.global_scope()
        exe = paddle.static.Executor(place)

        dirname = os.path.dirname(path)
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX

168 169 170 171 172 173 174 175 176 177
        [
            infer_program,
            feed_target_names,
            fetch_targets,
        ] = paddle.fluid.io.load_inference_model(
            dirname=dirname,
            executor=exe,
            model_filename=model_filename,
            params_filename=params_filename,
        )
178 179 180 181 182 183 184

        # Process inference program
        self._clean_up(infer_program)
        self._gather_input_thresholds(infer_program, scope)
        self._remove_scale_op(infer_program)

        # Save final program
185 186 187 188 189 190 191 192 193
        paddle.fluid.io.save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
            main_program=infer_program.clone(),
            model_filename=model_filename,
            params_filename=params_filename,
        )
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

        if is_dynamic_mode:
            paddle.disable_static()

    def _convert(self, model):
        """
        Convert the quantized model.

        Args:
            model(paddle.nn.Layer): The quantized model.
            inplace(bool): Whether apply conversion to the input model.
                           Default: False.
        Returns:
            None
        """
209 210

        for name, sub_layer in model.named_sublayers():
211 212
            if self._is_quant_layer(sub_layer):
                sub_layer._quant_config.quant_hook_handle.remove()
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        self._cal_thresholds(model)

        for name, sub_layer in model.named_sublayers():
            if self._is_quant_layer(sub_layer):
                self._save_output_thresholds(sub_layer, sub_layer._quant_config)

        self._wrap_simulated_layers(model)

    def _cal_thresholds(self, model):
        """
        Calculate the thresholds of inputs and outputs.

        Args:
            model(paddle.nn.Layer): The quantized model.
        Returns:
            None
        """
231 232 233
        assert isinstance(
            model, paddle.nn.Layer
        ), "The input model must be the instance of paddle.nn.Layer."
234

235 236
        total_num = 0
        cur_num = 0
237 238
        for name, sub_layer in model.named_sublayers():
            if self._is_quant_layer(sub_layer):
239 240 241 242 243 244
                total_num += 1

        for name, sub_layer in model.named_sublayers():
            if self._is_quant_layer(sub_layer):
                cur_num += 1
                if cur_num % 5 == 0:
245 246 247
                    _logger.info(
                        "Process the %s / %s layer" % (cur_num, total_num)
                    )
248

249 250
                quant_config = sub_layer._quant_config

251 252
                if quant_config.enable_in_act_quantizer:
                    quant_config.in_act_quantizer.cal_thresholds()
253 254
                quant_config.out_act_quantizer.cal_thresholds()

255
                if PTQRegistry.is_simulated_quant_layer(sub_layer):
256
                    weights = (sub_layer.weight,)
257
                    quant_config.wt_quantizer.sample_data(sub_layer, weights)
258 259 260 261 262 263 264 265 266 267 268 269
                    quant_config.wt_quantizer.cal_thresholds()

    def _save_output_thresholds(self, sub_layer, quant_config):
        """
        Save the output thresholds to the layer.

        Args:
            sub_layer(paddle.nn.Layer): The quantized layer.
            quant_config(PTQConfig): the quant config for the layer.
        Returns:
            None
        """
270 271 272
        assert isinstance(
            sub_layer, paddle.nn.Layer
        ), "The input model must be the instance of paddle.nn.Layer."
273 274 275 276 277 278

        layer_info = PTQRegistry.layer_info(sub_layer)

        output_names = layer_info.output_names
        output_thresholds = quant_config.out_act_quantizer.thresholds
        assert len(output_names) == 1
279 280 281 282 283 284 285 286 287 288
        if len(output_thresholds) == 1:
            save_name = output_names[0] + str(0) + "_threshold"
            sub_layer._set_op_attrs({save_name: output_thresholds[0]})
            sub_layer._set_op_attrs({"out_threshold": output_thresholds[0]})
        else:
            _logger.warning(
                "output_thresholds shape of {} need to be 1, but received {}".format(
                    output_names[0], len(output_thresholds)
                )
            )
289 290 291 292 293 294 295 296 297 298

    def _wrap_simulated_layers(self, model):
        """
        Replace conv2d and linear with the quantized layers, and save
        thresholds into the fake layers.
        Args:
            model(paddle.nn.Layer): The model to be quantized.
        Returns:
            None
        """
299 300 301
        assert isinstance(
            model, paddle.nn.Layer
        ), "The input model must be the instance of paddle.nn.Layer."
302 303

        for name, sub_layer in model.named_sublayers():
304 305 306
            if self._is_quant_layer(
                sub_layer
            ) and PTQRegistry.is_simulated_quant_layer(sub_layer):
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

                quant_config = sub_layer._quant_config
                assert quant_config.enable_in_act_quantizer == True
                wt_quantizer = quant_config.wt_quantizer
                in_act_quantizer = quant_config.in_act_quantizer

                # create layer
                quant_layer_name = None
                for key, value in utils.layer_name_map.items():
                    if isinstance(sub_layer, value):
                        quant_layer_name = 'Quantized' + key
                        break
                assert quant_layer_name is not None

                if isinstance(wt_quantizer, ptq_quantizer.AbsmaxQuantizer):
                    weight_quantize_type = "abs_max"
                else:
                    weight_quantize_type = "channel_wise_abs_max"
                kwargs = {
                    "weight_quantize_type": weight_quantize_type,
                    "activation_quantize_type": "moving_average_abs_max",
                    "weight_bits": wt_quantizer.quant_bits,
                    "activation_bits": in_act_quantizer.quant_bits,
                }

332 333 334
                quant_layer = quant_layers.__dict__[quant_layer_name](
                    sub_layer, **kwargs
                )
335 336 337 338

                # save the input thresholds
                assert hasattr(quant_layer, "_fake_quant_input")
                assert hasattr(quant_layer._fake_quant_input, "_scale")
339 340 341 342 343 344 345
                if len(in_act_quantizer.thresholds) == 1:
                    input_threshold = np.array(
                        [in_act_quantizer.thresholds[0]], dtype=np.float32
                    )
                    quant_layer._fake_quant_input._scale.set_value(
                        input_threshold
                    )
346 347 348 349 350 351

                assert hasattr(quant_layer, "_fake_quant_weight")
                assert hasattr(quant_layer._fake_quant_weight, "_scale")
                assert len(wt_quantizer.thresholds) == 1
                weight_threshold = wt_quantizer.thresholds[0]
                if isinstance(weight_threshold, list):
352 353 354
                    weight_threshold = np.array(
                        weight_threshold, dtype=np.float32
                    )
355
                else:
356 357 358
                    weight_threshold = np.array(
                        [weight_threshold], dtype=np.float32
                    )
359
                quant_layer._fake_quant_weight._scale.set_value(
360 361
                    weight_threshold
                )
362 363 364 365 366

                # save the output thresholds
                self._save_output_thresholds(quant_layer, quant_config)

                # replace the layer
367 368 369
                parent_layer, sub_name = utils.find_parent_layer_and_sub_name(
                    model, name
                )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
                setattr(parent_layer, sub_name, quant_layer)

    def _gather_input_thresholds(self, program, scope):
        """
        Get and save input thresholds from the front ops.

        Args:
            program(Program): the input infer program.
            scope(Scope): the corresponding scope for the program.
        Returns:
            None
        """
        for op in utils.program_all_ops(program):
            for in_var_name in utils._get_op_input_var_names(op):
                previous_op = utils.find_previous_op(op.block, in_var_name)
                if previous_op is None:
                    continue

388 389 390 391
                if (
                    "quantize_dequantize" in previous_op.type
                    or previous_op.type == "moving_average_abs_max_scale"
                ):
392 393 394
                    attr_name = previous_op.output('OutScale')[0]
                    in_threshold = utils.load_variable_data(scope, attr_name)
                    in_threshold = utils.fp_numpy_to_naive(in_threshold)
395
                    argname, index = utils._get_input_name_index(
396 397 398 399 400
                        op, in_var_name
                    )
                    op._set_attr(
                        argname + str(index) + "_threshold", in_threshold
                    )
401
                    op._set_attr("with_quant_attr", True)
402 403
                else:
                    for out_var_name in utils._get_op_output_var_names(
404 405
                        previous_op
                    ):
406 407 408
                        if out_var_name != in_var_name:
                            continue
                        argname, index = utils._get_output_name_index(
409 410
                            previous_op, out_var_name
                        )
411 412 413 414 415 416
                        attr_name = argname + str(index) + "_threshold"
                        if not previous_op.has_attr(attr_name):
                            continue
                        threshold = previous_op.attr(attr_name)

                        argname, index = utils._get_input_name_index(
417 418
                            op, in_var_name
                        )
419 420
                        attr_name = argname + str(index) + "_threshold"
                        op._set_attr(attr_name, threshold)
421
                        op._set_attr("with_quant_attr", True)
422 423 424 425 426 427 428 429 430 431 432 433

    def _clean_up(self, program):
        """
        Remove useless thresholds which are added in jit.save.

        Args:
            program(Program): the input infer program.
        Returns:
            None
        """

        def _helper(op, next_op, old_attr_name, new_attr_name):
434 435 436 437 438
            if (
                op.has_attr(old_attr_name)
                and next_op.has_attr(old_attr_name)
                and op.attr(old_attr_name) == next_op.attr(old_attr_name)
            ):
439 440 441 442
                threshold = op.attr(old_attr_name)
                op._remove_attr(old_attr_name)
                next_op._remove_attr(old_attr_name)
                next_op._set_attr(new_attr_name, threshold)
443
                next_op._set_attr("with_quant_attr", True)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

        for op in utils.program_all_ops(program):
            if "quantize_dequantize" in op.type:
                # remove the thresholds in fake ops
                for attr_name in op.attr_names:
                    if "_threshold" in attr_name:
                        op._remove_attr(attr_name)
            elif op.type in ["conv2d", "matmul"]:
                # change the thresholds in conv2d/matmul + eleadd
                arg_name = "Output" if op.type == "conv2d" else "Out"
                out_var_name = op.output(arg_name)[0]
                next_ops = utils.find_next_ops(op.block, out_var_name)
                if len(next_ops) > 1 or next_ops[0].type != "elementwise_add":
                    continue
                next_op = next_ops[0]

                argname, index = utils._get_output_name_index(op, out_var_name)
                old_attr_name = argname + str(index) + "_threshold"

                argname, index = utils._get_output_name_index(
464 465
                    next_op, next_op.output("Out")[0]
                )
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                new_attr_name = argname + str(index) + "_threshold"

                _helper(op, next_op, old_attr_name, new_attr_name)
                _helper(op, next_op, "out_threshold", "out_threshold")

    def _remove_scale_op(self, program):
        """
        Remove the moving_average_abs_max_scale op.
        """
        for op in utils.program_all_ops(program):
            if op.type == "moving_average_abs_max_scale":
                in_var_name = op.input("X")[0]
                out_var_name = op.output("Out")[0]
                next_ops = utils.find_next_ops(op.block, out_var_name)
                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
482

483 484 485
    @staticmethod
    def _is_skip_layer(layer):
        return hasattr(layer, "skip_quant") and layer.skip_quant == True
486

487 488 489
    @staticmethod
    def _is_quant_layer(layer):
        return hasattr(layer, "_quant_config")