compute_primitives.h 10.1 KB
Newer Older
F
Feng Xing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

N
niuliling123 已提交
17 18 19 20 21 22 23
#ifdef PADDLE_WITH_CUDA
#include <cuda_fp16.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_fp16.h>
#endif

24
#include "paddle/fluid/platform/cuda_device_function.h"
N
niuliling123 已提交
25 26
#include "paddle/fluid/platform/float16.h"

F
Feng Xing 已提交
27 28
namespace paddle {
namespace operators {
N
niuliling123 已提交
29 30 31
namespace kernel_primitives {
namespace details {

32
#ifdef __HIPCC__
33
constexpr int kReduceMaxThread = 256;
34 35
constexpr int kWarpSize = 64;
#else
36
constexpr int kReduceMaxThread = 128;
37 38 39
constexpr int kWarpSize = 32;
#endif

40 41
// kGlobalMode: block reduce, each block gets an output;
// kLocalMode: thread reduce, each thread gets an output;
42 43
enum ReduceMode { kGlobalMode, kLocalMode };

N
niuliling123 已提交
44 45 46 47 48 49 50 51 52 53 54 55
template <typename T>
class MPTypeTrait {
 public:
  using Type = T;
};

template <>
class MPTypeTrait<platform::float16> {
 public:
  using Type = float;
};

56 57 58 59 60 61 62
/**
 * @brief will be used in BlockYReduce, get the index of reduce_num in shared
 * memory
 */
__device__ __forceinline__ int SharedMemoryIndex(int index) {
  return (threadIdx.y + index) * blockDim.x + threadIdx.x;
}
N
niuliling123 已提交
63

64 65 66 67 68 69 70
template <typename T, typename ReduceOp>
__device__ __forceinline__ T WarpReduce(T val, ReduceOp reducer) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int stride = details::kWarpSize / 2; stride > 0; stride >>= 1) {
    T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride);
    val = reducer(val, temp);
N
niuliling123 已提交
71
  }
72 73
  return val;
}
N
niuliling123 已提交
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/* e.g.
 * |---------block---------|
 * |warp0|warp1|warp2|warp3|
 * |0~31|32~63|64~95|96~127|  ---->blockDim.x = 128
 *  \|/  \|/   \|/    \|/     ---->1. First WarpReduce in each warp
 * res0  res1  res2  res3     ---->2. Store result of each warp to shared memory
 *   \    \    /     /        ---->3. Load the result above from shared memory
 *        res                         to warp0 and process the second WarpReduce
 */

/**
 * @brief BlockXReduce reduce along blockDim.x
 */
template <typename T, typename ReduceOp>
__device__ __forceinline__ T BlockXReduce(T val, ReduceOp reducer) {
  __syncthreads();
  using details::kWarpSize;
  __shared__ T shared[2 * kWarpSize];
  int block_dim_x = blockDim.x;
  if (blockDim.x > kWarpSize) {
    block_dim_x = blockDim.x / kWarpSize;
    int lane = threadIdx.x % kWarpSize;
    int tid = threadIdx.y * blockDim.x + threadIdx.x;
    int wid = tid / kWarpSize;
    int bid = threadIdx.y;
    val = WarpReduce(val, reducer);
    if (lane == 0) {
      shared[wid] = val;
    }
    __syncthreads();
    val = shared[bid * block_dim_x + lane];
N
niuliling123 已提交
106
  }
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int stride = 1; stride < block_dim_x; stride <<= 1) {
    T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride);
    val = reducer(val, temp);
  }
  return val;
}

/**
 * @brief BlockYReduce reduce along blockDim.y
 */
template <typename T, typename ReduceOp>
__device__ __forceinline__ T BlockYReduce(T val, ReduceOp reducer) {
122
  __shared__ T shared_memory[details::kReduceMaxThread];
123 124 125 126 127 128 129 130 131 132 133 134 135
  shared_memory[SharedMemoryIndex(0)] = val;
  for (int stride = blockDim.y / 2; stride > 0; stride >>= 1) {
    __syncthreads();
    if (threadIdx.y < stride && threadIdx.y + stride < blockDim.y) {
      T temp = shared_memory[SharedMemoryIndex(stride)];
      val = reducer(val, temp);
    }
    shared_memory[SharedMemoryIndex(0)] = val;
  }
  return val;
}

}  // namespace details
N
niuliling123 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * @brief unary function
 * @param
 * T: data type of in
 * OutT: data type of out
 * NX: the cols of in
 * NY: the rows of in
 * BlockSize: the config of this device
 * OpFunc: compute functor which have an operator() as following
 *     template <typename T, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const T& a) const {
 *         return ...;
 *       }
 *     };
 */
template <typename T, typename OutT, int NX, int NY, int BlockSize,
          class OpFunc>
__device__ __forceinline__ void ElementwiseUnary(OutT* out, const T* in,
                                                 OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; idx++) {
    out[idx] = static_cast<OutT>(compute(in[idx]));
  }
}
N
niuliling123 已提交
162 163

/**
164
 * @brief binary function, in1 and in2 have same shape
165
 * @param
166 167 168 169 170
 * T: data type of in1, in2
 * OutT: data type of out
 * NX: the cols of in1, in2
 * NY: the rows of in1, in2
 * BlockSize: the config of this device
171 172 173 174 175 176 177
 * OpFunc: compute functor which have an operator() as following
 *     template <typename T, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const T& a, const T& b) const {
 *         return ...;
 *       }
 *     };
N
niuliling123 已提交
178 179 180 181 182 183 184 185
 */
template <typename T, typename OutT, int NX, int NY, int BlockSize,
          class OpFunc>
__device__ __forceinline__ void ElementwiseBinary(OutT* out, const T* in1,
                                                  const T* in2,
                                                  OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
186
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx]));
N
niuliling123 已提交
187 188 189 190
  }
}

/**
191
 * @brief ternary function, in1, in2 and in3 have same shape
192
 * @param
193 194 195 196 197
 * T: data type of in1, in2, in3
 * OutT: data type of out
 * NX: the cols of in1, in2
 * NY: the rows of in1, in2
 * BlockSize: the config of this device
198 199 200 201 202 203 204
 * OpFunc: compute functor which have an operator() as following
 *     template <typename T, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const T& a, const T& b, const T& c) const {
 *         return ...;
 *       }
 *     };
N
niuliling123 已提交
205 206 207
 */
template <typename T, typename OutT, int NX, int NY, int BlockSize,
          class OpFunc>
208 209 210
__device__ __forceinline__ void ElementwiseTernary(OutT* out, const T* in1,
                                                   const T* in2, const T* in3,
                                                   OpFunc compute) {
N
niuliling123 已提交
211 212
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx], in3[idx]));
  }
}

/**
 * @brief a general function for elementwise computation, all inputs have
 *        the same shape.
 * @param
 * T: data type of in1, in2, in3
 * OutT: data type of out
 * NX: the cols of in1, in2
 * NY: the rows of in1, in2
 * BlockSize: the config of this device
 * OpFunc: compute functor which have an operator() as following
 *     template <typename T, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const T* args) const {
 *         return ...;
 *       }
 *     };
 */
template <typename T, typename OutT, int NX, int NY, int BlockSize, int Arity,
          class OpFunc>
__device__ __forceinline__ void ElementwiseAny(OutT* out, T (*ins)[NX * NY],
                                               OpFunc compute) {
  T args[Arity];
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
#pragma unroll
    for (int j = 0; j < Arity; ++j) {
      args[j] = ins[j][idx];
    }
245
    out[idx] = static_cast<OutT>(compute(args));
N
niuliling123 已提交
246
  }
F
Feng Xing 已提交
247
}
N
niuliling123 已提交
248 249

/**
250 251
 * @brief cycle binary function, in1's shape size is [1, NX], in2's shape size
 * is [NY, NX], out's shape size is [NY, NX]
252
 * @param
253 254 255 256 257 258
 * T: data type of in1, in2
 * OutT: data type of out
 * NX: the cols of in1, in2
 * NY: the rows of in1, in2
 * BlockSize: the config of this device
 * OpFunc: compute functor eg: in1 + in2, in1 - in2
N
niuliling123 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
 */
template <typename T, typename OutT, int NX, int NY, int BlockSize,
          class OpFunc>
__device__ __forceinline__ void CycleBinary(OutT* out, const T* in1,
                                            const T* in2, OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX; idx++) {
#pragma unroll
    for (int idy = 0; idy < NY; idy++) {
      out[idx + idy * NX] =
          static_cast<OutT>(compute(in1[idx], in2[idx + idy * NX]));
    }
  }
F
Feng Xing 已提交
272
}
N
niuliling123 已提交
273

274 275 276 277 278 279 280
/**
 * @brief reduce function, in's shape size is [NX, NY].
 * If ReduceMode == kLocalMode then reduce NX, the shape of out is [NY, 1],
 * if ReduceMode == kGlobalMode then reduce between different threads, the
 * shape of out is [NY, NX]. If reduce_last_dim is false and reduce_num was
 * split, BlockYReduce will be called. If reduce_last_dim is true and
 * reduce_num was split, BlockXReduce will be called
281
 * @typename
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 * T: data type of in
 * NX: the cols of in
 * NY: the rows of in
 * BlockSize: the config of this device
 * OpFunc: reduce functor, eg: CustomSum, CustomMean in reduce_functor_op.h
 * @param:
 * reducer: reduce functor, eg: CustomSum<T>()
 * reduce_last_dim: if in's last dim need to be reduce then reduce_last_dim =
 * true
 */
template <typename T, int NX, int NY, int BlockSize, class OpFunc,
          details::ReduceMode Mode>
__device__ __forceinline__ void Reduce(T* out, const T* in, OpFunc reducer,
                                       bool reduce_last_dim) {
  int block_index = blockDim.y;

  if (Mode == details::ReduceMode::kGlobalMode) {
    bool block_reduce_y = (!reduce_last_dim) && (block_index > 1);
    // when reduce is not required for the last dim, and reduce num has been
    // split into multiple threads
    if (block_reduce_y) {
#pragma unroll
      for (int i = 0; i < NY * NX; i++) {  // reduce along blockdim.y
        out[i] = details::BlockYReduce<T, OpFunc>(out[i], reducer);
      }
    }

    // when last dimension need to be reduced
    if (reduce_last_dim) {
#pragma unroll
      for (int i = 0; i < NY * NX; i++) {  // reduce along blockDim.x
        out[i] = details::BlockXReduce<T, OpFunc>(out[i], reducer);
      }
    }
  } else {  // else  kLocalMode
#pragma unroll
    for (int i = 0; i < NY; ++i) {
#pragma unroll
      for (int j = 0; j < NX; ++j) {
        out[i] = reducer(out[i], in[i * NX + j]);
      }
    }
  }
}

N
niuliling123 已提交
327 328 329
}  // namespace kernel_primitives
}  // namespace operators
}  // namespace paddle