sequence_nest_rnn_multi_unequalength_inputs.py 3.1 KB
Newer Older
Y
Stash  
Yu Yang 已提交
1
# edit-mode: -*- python -*-
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
define_py_data_sources2(
    train_list='gserver/tests/Sequence/dummy.list',
    test_list=None,
    module='rnn_data_provider',
    obj='process_unequalength_subseq')

settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 2

speaker1 = data_layer(name="word1", size=dict_dim)
speaker2 = data_layer(name="word2", size=dict_dim)

emb1 = embedding_layer(input=speaker1, size=word_dim)
emb2 = embedding_layer(input=speaker2, size=word_dim)


Y
Stash  
Yu Yang 已提交
39 40
# This hierarchical RNN is designed to be equivalent to the simple RNN in
# sequence_rnn_multi_unequalength_inputs.conf
41
def outer_step(x1, x2):
Y
Stash  
Yu Yang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    index = [0]

    def inner_step(ipt):
        index[0] += 1
        i = index[0]
        outer_mem = memory(name="outer_rnn_state_%d" % i, size=hidden_dim)

        def inner_step_impl(y):
            inner_mem = memory(
                name="inner_rnn_state_" + y.name,
                size=hidden_dim,
                boot_layer=outer_mem)
            out = fc_layer(
                input=[y, inner_mem],
                size=hidden_dim,
                act=TanhActivation(),
                bias_attr=True,
                name='inner_rnn_state_' + y.name)
            return out

        encoder = recurrent_group(
            step=inner_step_impl, name='inner_%d' % i, input=ipt)
        last = last_seq(name="outer_rnn_state_%d" % i, input=encoder)
        return encoder, last

    _, sentence_last_state1 = inner_step(ipt=x1)
    encoder2, _ = inner_step(ipt=x2)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    encoder1_expand = expand_layer(
        input=sentence_last_state1, expand_as=encoder2)

    return [encoder1_expand, encoder2]


encoder1_rep, encoder2_rep = recurrent_group(
    name="outer",
    step=outer_step,
    input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
    targetInlink=emb2)

encoder1_last = last_seq(input=encoder1_rep)
encoder1_expandlast = expand_layer(input=encoder1_last, expand_as=encoder2_rep)
context = mixed_layer(
    input=[
        identity_projection(encoder1_expandlast),
        identity_projection(encoder2_rep)
    ],
    size=hidden_dim)

rep = last_seq(input=context)
prob = fc_layer(
    size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)

outputs(
    classification_cost(
        input=prob, label=data_layer(
            name="label", size=label_dim)))