test_recognize_digits.py 6.4 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.v2.fluid as fluid
import paddle.v2 as paddle
import sys
Y
Yang Yu 已提交
19
import numpy
Y
Yang Yu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def parse_arg():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "nn_type",
        help="The neural network type, in ['mlp', 'conv']",
        type=str,
        choices=['mlp', 'conv'])
    parser.add_argument(
        "--parallel",
        help='Run in parallel or not',
        default=False,
        action="store_true")
    parser.add_argument(
        "--use_cuda",
        help="Run the program by using CUDA",
        default=False,
        action="store_true")
    return parser.parse_args()


BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
L
Liu Yiqun 已提交
48 49 50
    avg_loss = fluid.layers.mean(x=loss)
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


L
Liu Yiqun 已提交
77
def train(args, save_dirname=None):
Y
Yang Yu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    print("recognize digits with args: {0}".format(" ".join(sys.argv[1:])))

    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if args.nn_type == 'mlp':
        net_conf = mlp
    else:
        net_conf = conv_net

    if args.parallel:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
94 95
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
96 97 98 99 100 101 102
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
        avg_loss = fluid.layers.mean(x=avg_loss)
        acc = fluid.layers.mean(x=acc)
    else:
L
Liu Yiqun 已提交
103
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
104

Y
Yang Yu 已提交
105 106
    test_program = fluid.default_main_program().clone()

Y
Yang Yu 已提交
107 108 109 110 111 112 113 114 115 116 117 118
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
119 120
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
121 122 123 124 125
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for batch_id, data in enumerate(train_reader()):
Y
Yang Yu 已提交
126 127
            # train a mini-batch, fetch nothing
            exe.run(feed=feeder.feed(data))
Y
Yang Yu 已提交
128
            if (batch_id + 1) % 10 == 0:
Y
Yang Yu 已提交
129 130 131 132 133 134 135 136 137 138 139 140
                acc_set = []
                avg_loss_set = []
                for test_data in test_reader():
                    acc_np, avg_loss_np = exe.run(program=test_program,
                                                  feed=feeder.feed(test_data),
                                                  fetch_list=[acc, avg_loss])
                    acc_set.append(float(acc_np))
                    avg_loss_set.append(float(avg_loss_np))
                # get test acc and loss
                acc_val = numpy.array(acc_set).mean()
                avg_loss_val = numpy.array(avg_loss_set).mean()
                if float(acc_val) > 0.85:  # test acc > 85%
L
Liu Yiqun 已提交
141 142 143 144
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["img"],
                                                      [prediction], exe)
                    return
Y
Yang Yu 已提交
145 146
                else:
                    print(
Y
Yang Yu 已提交
147
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
Y
Yang Yu 已提交
148
                        format(pass_id, batch_id + 1,
Y
Yang Yu 已提交
149
                               float(avg_loss_val), float(acc_val)))
Y
Yang Yu 已提交
150 151


L
Liu Yiqun 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
def infer(args, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

166 167
    # The input's dimension of conv should be 4-D or 5-D.
    tensor_img = numpy.random.rand(1, 1, 28, 28).astype("float32")
L
Liu Yiqun 已提交
168 169 170 171 172 173 174 175 176

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_img},
                      fetch_list=fetch_targets)
    print("infer results: ", results[0])


Y
Yang Yu 已提交
177
if __name__ == '__main__':
L
Liu Yiqun 已提交
178 179 180 181 182 183 184
    args = parse_arg()
    if not args.use_cuda and not args.parallel:
        save_dirname = "recognize_digits_" + args.nn_type + ".inference.model"
    else:
        save_dirname = None
    train(args, save_dirname)
    infer(args, save_dirname)