predict.py 5.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, util, DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import IndexSlot
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
  python predict.py -h 
"""
UNK_IDX = 0


class Prediction():
    def __init__(self, train_conf, dict_file, model_dir, label_file):
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """

        self.dict = {}
        self.labels = {}
        self.labels_reverse = {}
        self.load_dict_label(dict_file, label_file)

        len_dict = len(self.dict)
        len_label = len(self.labels)

        conf = parse_config(
            train_conf,
            'dict_len=' + str(len_dict) + 
            ',label_len=' + str(len_label) +
            ',is_predict=True')
        self.network = swig_paddle.GradientMachine.createFromConfigProto(
            conf.model_config)
        self.network.loadParameters(model_dir)

        slots = [IndexSlot(len_dict), IndexSlot(len_dict), IndexSlot(len_dict),
                 IndexSlot(len_dict), IndexSlot(len_dict), IndexSlot(2)]
        self.converter = util.DataProviderWrapperConverter(True, slots)

    def load_dict_label(self, dict_file, label_file):
        """
        Load dictionary from self.dict_file.
        """
        for line_count, line in enumerate(open(dict_file, 'r')):
            self.dict[line.strip()] = line_count

        for line_count, line in enumerate(open(label_file, 'r')):
            self.labels[line.strip()] = line_count
            self.labels_reverse[line_count] = line.strip()

    def get_data(self, data_file):
        """
        Get input data of paddle format.
        """
        with open(data_file, 'r') as fdata:
            for line in fdata:
                sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip(
                ).split('\t')
                words = sentence.split()
                sen_len = len(words)

                word_slot = [self.dict.get(w, UNK_IDX) for w in words]
                predicate_slot = [self.dict.get(predicate, UNK_IDX)] * sen_len
                ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
                ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
                ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len

                marks = mark.split()
                mark_slot = [int(w) for w in marks]

                yield word_slot, predicate_slot, ctx_n1_slot, \
                      ctx_0_slot, ctx_p1_slot, mark_slot

    def predict(self, data_file):
        """
        data_file: file name of input data.
        """
        input = self.converter(self.get_data(data_file))
        output = self.network.forwardTest(input)
        prob = output[0]["value"]
        lab = list(np.argsort(-prob)[:, 0])

        with open(data_file, 'r') as fin, open('predict.res', 'w') as fout:
            index = 0
            for line in fin:
                sen = line.split('\t')[0]
                len_sen = len(sen.split())
                line_labels = lab[index:index + len_sen]
                index += len_sen
                fout.write(sen + '\t' + ' '.join([self.labels_reverse[
                    i] for i in line_labels]) + '\n')


def option_parser():
    usage = ("python predict.py -c config -w model_dir " 
             "-d word dictionary -l label_file -i input_file")
    parser = OptionParser(usage="usage: %s [options]" % usage)
    parser.add_option(
        "-c",
        "--tconf",
        action="store",
        dest="train_conf",
        help="network config")
    parser.add_option(
        "-d",
        "--dict",
        action="store",
        dest="dict_file",
        help="dictionary file")
    parser.add_option(
        "-l",
        "--label",
        action="store",
        dest="label_file",
        default=None,
        help="label file")
    parser.add_option(
        "-i",
        "--data",
        action="store",
        dest="data_file",
        help="data file to predict")
    parser.add_option(
        "-w",
        "--model",
        action="store",
        dest="model_path",
        default=None,
        help="model path")
    return parser.parse_args()


def main():
    options, args = option_parser()
    train_conf = options.train_conf
    data_file = options.data_file
    dict_file = options.dict_file
    model_path = options.model_path
    label_file = options.label_file

    swig_paddle.initPaddle("--use_gpu=0")
    predict = Prediction(train_conf, dict_file, model_path, label_file)
    predict.predict(data_file)


if __name__ == '__main__':
    main()