interpolate_op.cc 27.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
13

S
sneaxiy 已提交
14
#include <memory>
15
#include <string>
16
#include <vector>
17

18
#include "paddle/fluid/framework/op_registry.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;
27
using DataLayout = framework::DataLayout;
28

29 30 31 32
static void Interpolate1DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

33 34
  PADDLE_ENFORCE_EQ("linear",
                    interp_method,
35 36 37 38 39 40 41 42 43 44 45
                    platform::errors::InvalidArgument(
                        "Interpolation method can only be \"linear\" when"
                        "Input(X) dimension is 3, but got method = %s .",
                        interp_method));
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
46 47
        inputs_name.size(),
        1,
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 1. "
            "Attr(out_shape)'s length must be 1 for 3-D input tensor, but got "
            "size = %d .",
            inputs_name.size()));
    int out_w = ctx->Attrs().Get<int>("out_w");
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_w};
    } else {
      dim_out = {dim_x[0], out_w, dim_x[2]};
    }
    ctx->SetOutputDim("Out", dim_out);

    return;
  }

  int out_w;
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(
69 70
        scale_tensor.size(),
        1,
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got dimension = %d .",
            scale_tensor.size()));
    out_w = -1;
  } else {
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
      out_w = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[2] * scale)
                   : static_cast<int>(dim_x[1] * scale));
      // protect when input shape is -1
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_w = ctx->Attrs().Get<int>("out_w");
    }
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(
92 93
        out_size_dim.size(),
        1,
94 95 96
        platform::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got dimention = %d .",
            out_size_dim.size()));
K
Kqnonrime 已提交
97
    PADDLE_ENFORCE_EQ(
98 99
        out_size_dim[0],
        1,
K
Kqnonrime 已提交
100 101 102
        platform::errors::InvalidArgument(
            "OutSize's 0-th dimension's value must be 1, but got value = %d .",
            out_size_dim[0]));
103 104 105 106 107 108 109 110 111 112 113 114 115
    ctx->ShareLoD("X", "Out");
    return;
  }

  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_w};
  } else {
    dim_out = {dim_x[0], out_w, dim_x[2]};
  }
  ctx->SetOutputDim("Out", dim_out);
}

K
Kaipeng Deng 已提交
116 117 118 119
static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

120 121
  PADDLE_ENFORCE_EQ("bilinear" == interp_method || "nearest" == interp_method ||
                        "bicubic" == interp_method,
122 123 124 125 126 127
                    true,
                    platform::errors::InvalidArgument(
                        "Interpolation method can only be \"bilinear\" "
                        "or \"nearest\" or \"bicubic\" when "
                        "Input(X) dimension is 4, but got method is %s.",
                        interp_method));
128 129
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
K
Kaipeng Deng 已提交
130

131 132 133 134
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
135 136
        inputs_name.size(),
        2,
137 138 139 140 141
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 2. "
            "Attr(out_shape)'s length must be 2 for 4-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
142 143
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
144 145 146 147 148 149 150
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
    }
    ctx->SetOutputDim("Out", dim_out);
151 152 153 154

    return;
  }

K
Kaipeng Deng 已提交
155
  int out_h, out_w;
156 157
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
158
    PADDLE_ENFORCE_EQ(
159 160
        scale_tensor.size(),
        1,
161 162 163
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got dimension = %d .",
            scale_tensor.size()));
164 165
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
166
  } else {
167 168 169
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
170 171 172 173 174 175
      out_h = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[2] * scale)
                   : static_cast<int>(dim_x[1] * scale));
      out_w = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[3] * scale)
                   : static_cast<int>(dim_x[2] * scale));
176 177 178 179 180 181 182
      // protect when input shape is -1
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
183 184 185 186
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
187
    PADDLE_ENFORCE_EQ(
188 189
        out_size_dim.size(),
        1,
190 191 192
        platform::errors::InvalidArgument("OutSize's dimension size must be 1, "
                                          "but got dimension size is %d .",
                                          out_size_dim.size()));
193
    PADDLE_ENFORCE_EQ(
194 195
        out_size_dim[0],
        2,
196
        platform::errors::InvalidArgument(
197
            "OutSize's dimension[0] must be 2, but got dimension[0] is %d .",
198
            out_size_dim[0]));
K
Kaipeng Deng 已提交
199 200 201 202
    ctx->ShareLoD("X", "Out");
    return;
  }

203 204 205 206 207 208 209
  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
  }
  ctx->SetOutputDim("Out", dim_out);
K
Kaipeng Deng 已提交
210 211 212 213 214 215
}

static void Interpolate3DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

216
  PADDLE_ENFORCE_EQ(
217 218
      "trilinear",
      interp_method,
219 220 221 222
      platform::errors::InvalidArgument(
          "Interpolation method can only be \"trilinear\" when Input(X) "
          "dimension is 5, but got method = %s .",
          interp_method));
223 224
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
K
Kaipeng Deng 已提交
225

226 227 228 229
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
230 231
        inputs_name.size(),
        3,
232 233 234 235 236
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'s size of Op(interpolate) must be 3. "
            "Attr(out_shape)'s length must be 3 for 5-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
237 238 239
    int out_d = ctx->Attrs().Get<int>("out_d");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
240 241 242 243 244 245 246
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
    }
    ctx->SetOutputDim("Out", dim_out);
247 248 249 250

    return;
  }

K
Kaipeng Deng 已提交
251
  int out_d, out_h, out_w;
252 253
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
254
    PADDLE_ENFORCE_EQ(
255 256
        scale_tensor.size(),
        1,
257 258 259
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got size = %d .",
            scale_tensor.size()));
260 261 262
    out_d = -1;
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
263
  } else {
264 265 266
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
267 268 269 270 271 272 273 274 275
      out_d = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[2] * scale)
                   : static_cast<int>(dim_x[1] * scale));
      out_h = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[3] * scale)
                   : static_cast<int>(dim_x[2] * scale));
      out_w = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[4] * scale)
                   : static_cast<int>(dim_x[3] * scale));
276 277 278 279 280 281 282 283 284
      // protect when input shape is -1
      out_d = out_d > 0 ? out_d : -1;
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_d = ctx->Attrs().Get<int>("out_d");
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
285 286 287 288
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
289
    PADDLE_ENFORCE_EQ(
290 291
        out_size_dim.size(),
        1,
292 293 294
        platform::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got size is %d.",
            out_size_dim.size()));
295 296
    PADDLE_ENFORCE_EQ(out_size_dim[0],
                      3,
297 298 299
                      platform::errors::InvalidArgument(
                          "OutSize's dim[0] must be 3, but got size is %d.",
                          out_size_dim[0]));
K
Kaipeng Deng 已提交
300 301 302 303
    ctx->ShareLoD("X", "Out");
    return;
  }

304 305 306 307 308 309 310
  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
  }
  ctx->SetOutputDim("Out", dim_out);
K
Kaipeng Deng 已提交
311 312
}

313
class InterpolateOp : public framework::OperatorWithKernel {
314 315 316 317 318
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
319 320
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Interpolate");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Interpolate");
321

322
    auto dim_x = ctx->GetInputDim("X");  // NCHW format
323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(
        dim_x.size() == 3 || dim_x.size() == 4 || dim_x.size() == 5,
        platform::errors::Unimplemented(
            "Input(X) dimension must be 3, 4 or 5, but got dimension = %d .",
            dim_x.size()));
    if (dim_x.size() == 3) {
      // shape check for 1D interpolate for input tensor shape NCHW
      Interpolate1DInferShapeCheck(ctx);
    } else if (dim_x.size() == 4) {
K
Kaipeng Deng 已提交
332 333 334 335 336
      // shape check for 2D interpolate for input tensor shape NCHW
      Interpolate2DInferShapeCheck(ctx);
    } else {  // dim_x.size() == 5
      // shape check for 3D interpolate for input tensor shape NCDHW
      Interpolate3DInferShapeCheck(ctx);
337 338 339 340 341 342
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
343
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
344 345

#ifdef PADDLE_WITH_MKLDNN
346
    const auto& interp_method = ctx.Attr<std::string>("interp_method");
347
    // TODO(danqing): support other interp_method
348
    if (this->CanMKLDNNBeUsed(ctx, data_type) &&
349
        (interp_method == "nearest" || interp_method == "bilinear")) {
J
jiahongyu 已提交
350 351 352 353
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
354 355 356
    }
#endif

J
jiahongyu 已提交
357
    return framework::OpKernelType(data_type, ctx.GetPlace());
358
  }
359 360

  framework::OpKernelType GetKernelTypeForVar(
361 362
      const std::string& var_name,
      const Tensor& tensor,
363
      const framework::OpKernelType& expected_kernel_type) const override {
364 365 366 367 368 369 370 371 372 373
#ifdef PADDLE_WITH_MKLDNN
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN)) {
      auto attrs = Attrs();
      auto ar = paddle::framework::AttrReader(attrs);
      const std::string data_format = ar.Get<std::string>("data_layout");
      auto dl = framework::StringToDataLayout(data_format);
      // Some models may have intentionally set "AnyLayout" for pool
      // op. Treat this as NCHW (default data_format value)
      if (dl != framework::DataLayout::kAnyLayout) {
374 375
        return framework::OpKernelType(
            expected_kernel_type.data_type_, tensor.place(), dl);
376 377 378
      }
    }
#endif
379 380 381
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
382 383
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
384
  }
385 386
};

387
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
388 389 390
 public:
  void Make() override {
    AddInput("X",
391
             "The input tensor of interpolate operator, "
K
Kaipeng Deng 已提交
392 393
             "This is a 4-D tensor with shape of [N, C, H, W] or a "
             "5-D tensor with shape of [N, C, D, H, W].");
394
    AddInput("OutSize",
395
             "This is a 1-D tensor with two numbers to specify output size. "
K
Kaipeng Deng 已提交
396 397
             "It should be [output_height, output_width] when input is a 4-D "
             "tensor and should be [output_depth, output_height, output_width] "
398 399 400 401 402 403 404 405 406 407 408 409 410
             "when input is a 5-D tensor. It has a higher priority than "
             "the attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDispensable();
    AddInput("SizeTensor",
             "(vector<Tensor<int32>>, optional). If provided, interpolate will "
             "use this. The shape of the tensor in vector MUST BE [1]. "
             "It has the highest priority compare with Input(OutSize) and "
             "attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("Scale",
             "This is a 1-D tensor with one number to specify output scale. "
             "It has the higher priority compare with attr(scale).")
411
        .AsDispensable();
412 413
    AddOutput("Out",
              "The output tensor of interpolate operator, "
K
Kaipeng Deng 已提交
414
              "This is a tensor in same rank with Input(X).");
415

416 417 418 419 420 421 422
    AddAttr<std::string>(
        "data_layout",
        "(string, default NCHW) Only used in "
        "an optional string from: \"NHWC\", \"NCHW\". "
        "Specify that the data format of the input and output data is "
        "channel_first or channel_last.")
        .SetDefault("NCHW");
K
Kaipeng Deng 已提交
423 424 425
    AddAttr<int>("out_d", "output depth of interpolate op.").SetDefault(0);
    AddAttr<int>("out_h", "output height of interpolate op.").SetDefault(0);
    AddAttr<int>("out_w", "output width of interpolate op.").SetDefault(0);
D
dengkaipeng 已提交
426
    AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
427 428
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
429 430
                         "method, can be \"linear\" for linear interpolation"
                         ",\"bilinear\" for "
K
Kaipeng Deng 已提交
431 432
                         "bilinear interpolation, \"trilinear\" for trilinear "
                         "interpolation and \"nearest\" for nearest "
X
xiaoting 已提交
433 434
                         "neighbor interpolation, and \"bicubic\" for bicubic"
                         "interpolation.")
435
        .SetDefault("bilinear");
436 437
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
438
        "an optional bool. Defaults to True. "
439 440
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
441
        "If False, are not aligned")
442 443
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
444
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
445 446
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
447
        .SetDefault(1);
448 449
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
450 451
        .SetDefault(false)
        .AsExtra();
452
    AddComment(R"DOC(
453 454
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
455
          for nearest neighbor interpolation and \"bilinear\" for bilinear
456
          interpolation and \"linear\" for linear interpolation..
457

458
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
459
          in both the 3rd dimension(in height direction) and the 4th dimension(in width
460
          direction) on input tensor.
461 462 463 464 465 466 467 468

          Linear interpolation is the method of using a line connecting two known quantities
          to determine the value of an unknown quantity between the two known quantities.

          Bilinear interpolation is an extension of linear interpolation for
          interpolating functions of two variables (e.g. H-direction and
          W-direction in this op) on a rectilinear 2D grid. The key idea is
          to perform linear interpolation first in one direction, and then
469 470
          again in the other direction.

471 472 473
          Trilinear interpolation is an extension of linear interpolation for
          interpolating functions of three variables (e.g. D-direction,
          H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
474 475
          The linear interpolation is performed on three directions.

X
xiaoting 已提交
476 477 478 479 480
          Bicubic interpolation is an extension of cubic interpolation for interpolating
          data points on a two-dimensional regular grid. The interpolated surface is
          smoother than corresponding surfaces obtained by bilinear interpolation or
          nearest-neighbor interpolation.

481
          Align_corners and align_mode are optional parameters,the calculation method
482
          of interpolation can be selected by them.
483

484 485
          Example:

T
tink2123 已提交
486
          For scale:
487

488 489 490
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
491

492
            else:
493

494
              scale_{factor} = float(in_{size}/out_{size})
495 496


497
          Nearest neighbor interpolation:
498

T
tink2123 已提交
499
          if:
500 501 502 503 504 505 506 507
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
508
          else:
509 510 511 512 513 514 515 516 517 518
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
519
          if:
520
              align_corners = False , align_mode = 0
521

522 523
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
524

525 526 527 528
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
529
          else:
530

531 532 533 534 535 536
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

K
Kaipeng Deng 已提交
537 538 539 540
          Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
541

K
Kaipeng Deng 已提交
542 543
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
544

K
Kaipeng Deng 已提交
545 546 547 548 549 550
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
551

K
Kaipeng Deng 已提交
552 553 554 555 556 557
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
X
xiaoting 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571

          Bicubic interpolation:

          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
572

573
          For details of nearest neighbor interpolation, please refer to Wikipedia:
574
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
575

576
          For details of bilinear interpolation, please refer to Wikipedia:
577
          https://en.wikipedia.org/wiki/Bilinear_interpolation
K
Kaipeng Deng 已提交
578

579
          For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
580
          https://en.wikipedia.org/wiki/Trilinear_interpolation
X
xiaoting 已提交
581 582 583

          For details of bicubic interpolation, please refer to Wikipedia:
          https://en.wikipedia.org/wiki/Bicubic_interpolation
584 585 586 587
         )DOC");
  }
};

588
class InterpolateOpGrad : public framework::OperatorWithKernel {
589 590 591 592 593
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
594
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InterpolateGrad");
595 596 597 598
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "InterpolateGrad");
599

600 601 602 603 604 605 606 607
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
608 609 610
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
611
  }
612 613

  framework::OpKernelType GetKernelTypeForVar(
614 615
      const std::string& var_name,
      const Tensor& tensor,
616 617 618 619
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
620 621
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
622
  }
623 624
};

H
hong 已提交
625 626
template <typename T>
class InterpolateGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
627
 public:
H
hong 已提交
628
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
629 630

 protected:
631
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
632 633 634 635
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    if (this->HasInput("SizeTensor") > 0) {
      op->SetInput("SizeTensor", this->Input("SizeTensor"));
636
    }
H
hong 已提交
637 638
    if (this->HasInput("OutSize") > 0) {
      op->SetInput("OutSize", this->Input("OutSize"));
S
sneaxiy 已提交
639
    }
H
hong 已提交
640 641
    if (this->HasInput("Scale") > 0) {
      op->SetInput("Scale", this->Input("Scale"));
642
    }
H
hong 已提交
643 644 645
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
646 647 648
  }
};

649
DECLARE_NO_NEED_BUFFER_VARS_INFERER(InterpolateGradNoNeedBufferVarsInferer,
650
                                    "X");
S
sneaxiy 已提交
651

652 653 654 655
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
656 657 658
REGISTER_OPERATOR(bilinear_interp,
                  ops::InterpolateOp,
                  ops::InterpolateOpMaker,
H
hong 已提交
659 660
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
661 662
REGISTER_OPERATOR(bilinear_interp_grad,
                  ops::InterpolateOpGrad,
663
                  ops::InterpolateGradNoNeedBufferVarsInferer);
664 665 666
REGISTER_OPERATOR(nearest_interp,
                  ops::InterpolateOp,
                  ops::InterpolateOpMaker,
H
hong 已提交
667 668
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
669 670
REGISTER_OPERATOR(nearest_interp_grad,
                  ops::InterpolateOpGrad,
671
                  ops::InterpolateGradNoNeedBufferVarsInferer);
672 673 674
REGISTER_OPERATOR(trilinear_interp,
                  ops::InterpolateOp,
                  ops::InterpolateOpMaker,
H
hong 已提交
675 676
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
677 678
REGISTER_OPERATOR(trilinear_interp_grad,
                  ops::InterpolateOpGrad,
679
                  ops::InterpolateGradNoNeedBufferVarsInferer);
680 681 682
REGISTER_OPERATOR(bicubic_interp,
                  ops::InterpolateOp,
                  ops::InterpolateOpMaker,
X
xiaoting 已提交
683 684
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
685 686
REGISTER_OPERATOR(bicubic_interp_grad,
                  ops::InterpolateOpGrad,
687
                  ops::InterpolateGradNoNeedBufferVarsInferer);
688 689
REGISTER_OP_CPU_KERNEL(bilinear_interp,
                       ops::InterpolateKernel<float>,
690 691
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
692 693
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad,
                       ops::InterpolateGradKernel<float>,
694
                       ops::InterpolateGradKernel<double>);
695 696
REGISTER_OP_CPU_KERNEL(nearest_interp,
                       ops::InterpolateKernel<float>,
697 698
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
699 700
REGISTER_OP_CPU_KERNEL(nearest_interp_grad,
                       ops::InterpolateGradKernel<float>,
701
                       ops::InterpolateGradKernel<double>);
702 703
REGISTER_OP_CPU_KERNEL(trilinear_interp,
                       ops::InterpolateKernel<float>,
K
Kaipeng Deng 已提交
704 705
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
706 707
REGISTER_OP_CPU_KERNEL(trilinear_interp_grad,
                       ops::InterpolateGradKernel<float>,
K
Kaipeng Deng 已提交
708
                       ops::InterpolateGradKernel<double>);
709 710 711
REGISTER_OPERATOR(linear_interp,
                  ops::InterpolateOp,
                  ops::InterpolateOpMaker,
712 713
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
714 715
REGISTER_OPERATOR(linear_interp_grad,
                  ops::InterpolateOpGrad,
716
                  ops::InterpolateGradNoNeedBufferVarsInferer);
717 718
REGISTER_OP_CPU_KERNEL(linear_interp,
                       ops::InterpolateKernel<float>,
719 720
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
721 722
REGISTER_OP_CPU_KERNEL(linear_interp_grad,
                       ops::InterpolateGradKernel<float>,
723
                       ops::InterpolateGradKernel<double>);
724 725
REGISTER_OP_CPU_KERNEL(bicubic_interp,
                       ops::InterpolateKernel<float>,
X
xiaoting 已提交
726
                       ops::InterpolateKernel<double>);
727 728
REGISTER_OP_CPU_KERNEL(bicubic_interp_grad,
                       ops::InterpolateGradKernel<float>,
X
xiaoting 已提交
729
                       ops::InterpolateGradKernel<double>);