trainer_factory.py 4.3 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
import threading
import time

import numpy as np

H
hutuxian 已提交
20 21
from .trainer_desc import MultiTrainer, DistMultiTrainer, PipelineTrainer
from .device_worker import Hogwild, DownpourSGD, Section
X
xjqbest 已提交
22

23
__all__ = ["TrainerFactory", "FetchHandler", "FetchHandlerMonitor"]
D
dongdaxiang 已提交
24 25 26 27 28 29


class TrainerFactory(object):
    def __init__(self):
        pass

30
    def _create_trainer(self, opt_info=None):
D
dongdaxiang 已提交
31 32
        trainer = None
        device_worker = None
D
dongdaxiang 已提交
33
        if opt_info == None:
D
dongdaxiang 已提交
34 35 36
            # default is MultiTrainer + Hogwild
            trainer = MultiTrainer()
            device_worker = Hogwild()
37
            trainer._set_device_worker(device_worker)
D
dongdaxiang 已提交
38
        else:
D
dongdaxiang 已提交
39 40 41 42
            trainer_class = opt_info["trainer"]
            device_worker_class = opt_info["device_worker"]
            trainer = globals()[trainer_class]()
            device_worker = globals()[device_worker_class]()
H
hutuxian 已提交
43 44 45 46
            if "fleet_desc" in opt_info:
                device_worker._set_fleet_desc(opt_info["fleet_desc"])
                trainer._set_fleet_desc(opt_info["fleet_desc"])
                trainer._set_use_cvm(opt_info["use_cvm"])
47
                trainer._set_scale_datanorm(opt_info["scale_datanorm"])
T
Thunderbrook 已提交
48
                trainer._set_dump_slot(opt_info["dump_slot"])
49
                trainer._set_mpi_rank(opt_info["mpi_rank"])
T
Thunderbrook 已提交
50
                trainer._set_mpi_size(opt_info["mpi_size"])
51 52
                trainer._set_dump_fields(opt_info["dump_fields"])
                trainer._set_dump_fields_path(opt_info["dump_fields_path"])
T
Thunderbrook 已提交
53
                trainer._set_dump_file_num(opt_info["dump_file_num"])
54
                trainer._set_dump_converter(opt_info["dump_converter"])
55
                trainer._set_adjust_ins_weight(opt_info["adjust_ins_weight"])
56
            trainer._set_device_worker(device_worker)
D
dongdaxiang 已提交
57
        return trainer
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


class FetchHandlerMonitor(object):
    def __init__(self, scope, handler):
        self.fetch_instance = handler
        self.fetch_thread = threading.Thread(
            target=self.handler_decorator,
            args=(scope, self.fetch_instance.handler))
        self.running = False

    def start(self):
        self.running = True
        self.fetch_thread.setDaemon(True)
        self.fetch_thread.start()

    def handler_decorator(self, fetch_scope, fetch_handler):
        fetch_target_names = self.fetch_instance.fetch_target_names
        period_secs = self.fetch_instance.period_secs

        elapsed_secs = 0
        while True:
            while self.running and elapsed_secs >= period_secs:
                elapsed_secs = 0

                fetch_vars = [
                    fetch_scope.find_var(varname)
                    for varname in fetch_target_names
                ]

                fetch_tensors = [var.get_tensor() for var in fetch_vars]

                if self.fetch_instance.return_np:
                    fetch_nps = []

                    for tensor in fetch_tensors:
                        lod = tensor.lod()

                        if len(lod) > 0:
                            raise RuntimeError(
                                "Some of your fetched tensors hold LoD information. \
                        They can not be completely cast to Python ndarray. We can not \
                        return LoDTensor itself directly, please choose another targets"
                            )

                        if tensor._is_initialized():
                            fetch_nps.append(np.array(tensor))
                        else:
                            fetch_nps.append(None)

                    fetch_handler(fetch_nps)
                else:
                    fetch_handler(fetch_tensors)
            else:
                time.sleep(1)
                elapsed_secs += 1

    def stop(self):
        self.running = False