sharding_optimizer.py 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17 18 19 20 21 22 23 24 25 26
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
27 28 29 30
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard

from paddle.fluid import layers

31
import logging
32 33 34
logging.basicConfig(
    format='%(asctime)s %(levelname)-8s %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S')
35 36 37 38 39 40 41 42 43 44 45 46
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
47 48
            "LarsOptimizer",
            "LambOptimizer",
49
            "ModelParallelOptimizer",
50 51 52 53 54 55 56 57 58 59 60
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
61 62 63 64
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
65 66 67 68 69 70 71 72 73 74 75 76 77 78

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
79
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
80 81 82 83 84 85

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
86 87 88 89
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
90 91 92 93 94 95 96

        # parallelism
        self.sharding_degree = int(self.user_defined_strategy.sharding_configs[
            "sharding_degree"])
        assert self.sharding_degree > 1, "sharding degree must be larger than zero"
        self.mp_degree = int(self.user_defined_strategy.sharding_configs[
            "mp_degree"])
97 98
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        self.pp_degree = 1

        # dp here is the pure dp as the outest parallelism
        self.dp_degree = int(self.role_maker._worker_num() // self.mp_degree //
                             self.sharding_degree)
        assert self.role_maker._worker_num(
        ) == self.dp_degree * self.mp_degree * self.sharding_degree * self.pp_degree
        if self.hybrid_dp:
            assert self.dp_degree > 1, "hybrid dp is on, but dp degree is [{}]".format(
                self.dp_degree)

        # segment
        self._sharding_segment_strategy = str(
            self.user_defined_strategy.sharding_configs[
                "sharding_segment_strategy"])
        if self._sharding_segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = self.user_defined_strategy.sharding_configs[
                "segment_broadcast_MB"]
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
        elif self._sharding_segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = self.user_defined_strategy.sharding_configs[
                "segment_anchors"]
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
                    str(self._sharding_segment_strategy)))

        # gradient merge
        self._gradient_merge_acc_step = int(
            self.user_defined_strategy.sharding_configs[
                "gradient_merge_acc_step"])
        self._grad2merged_grad = dict()

137 138 139 140 141 142 143 144 145 146 147 148 149
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

150 151 152 153 154
        # step0: _init_comm
        self._init_comm()

        # step1: _build_shard
        self._build_shard(params_grads)
155 156 157 158 159 160 161 162 163

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

164 165 166 167 168 169
        # step4: scale the loss by the num of dp degree
        # sharding is also a senario of dp
        scale_ = self.dp_degree * self.sharding_degree
        if scale_ > 1:
            insert_scale_loss_grad_ops(main_block, scale=1.0 / scale_)

170 171 172 173 174
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
175 176
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)
177

178 179 180 181 182 183 184 185 186
        # step6: optional gradient merge
        if self._gradient_merge_acc_step > 1:
            self._sharding_gradient_merge(main_block)

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
187
        self._wait()
188

189 190
        return optimize_ops, params_grads

191
    def _init_comm(self):
192
        # config sharding & dp groups
193 194 195 196 197 198 199 200 201 202
        self._build_group()

        startup_block = self._startup_program.global_block()
        self.startup_prog_sync_var = startup_block.create_var(
            name="startup_prog_sync_var",
            shape=[1],
            dtype=core.VarDesc.VarType.INT32,
            persistable=False)

        # global
203
        self._collective_helper._init_communicator(
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            self._startup_program,
            self.current_endpoint,
            self.global_endpoints,
            self.global_rank,
            self.global_ring_id,
            False,
            global_ring_id=self.global_ring_id,
            sync=False)
        append_naive_sync(startup_block, self.startup_prog_sync_var,
                          self.global_ring_id)

        # mp
        if self.mp_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                global_ring_id=self.global_ring_id,
                sync=False)
            append_naive_sync(startup_block, self.startup_prog_sync_var,
                              self.global_ring_id)

        # sharding
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                global_ring_id=self.global_ring_id,
                sync=False)
            append_naive_sync(startup_block, self.startup_prog_sync_var,
                              self.global_ring_id)

243
        # dp
244
        if self.dp_degree > 1:
245
            self._collective_helper._init_communicator(
246 247 248 249 250 251 252 253 254 255
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                global_ring_id=self.global_ring_id,
                sync=False)
            append_naive_sync(startup_block, self.startup_prog_sync_var,
                              self.global_ring_id)
256

257 258
        startup_block._sync_with_cpp()

259
    def _build_shard(self, params_grads):
260 261
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
262
        self._shard.setup(params_grads, self.sharding_rank,
263
                          self.sharding_degree)
264 265 266 267 268 269

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
270 271 272
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
273 274
            self._collective_helper._wait(current_endpoint, endpoints)

275 276 277 278 279 280 281 282
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

283 284 285 286 287
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
288 289

        var2broadcast_time = dict()
290 291 292 293 294
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
                                input_name = input_name[:input_name.find(
                                    ".cast_fp16@GRAD")]

                        if input_name in self._backward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            self._forward_remain_anchors.remove(output_name)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
                                                                      broadcast_var_base_name.
                                                                      find(
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) != 0:
                    assert len(op_role_var) % 2 == 0
                    for i in range(0, len(op_role_var), 2):
                        param, reduced_grad = op_role_var[i], op_role_var[i + 1]
                        segment._allreduce_vars.append(reduced_grad)
                        assert (
                            reduced_grad not in self._reduced_grads_to_param)
                        self._reduced_grads_to_param[reduced_grad] = param

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
            for varname in sorted(
                    var2broadcast_time, key=var2broadcast_time.get,
                    reverse=True):
                logging.info("Sharding broadcast: [{}] times [{}]".format(
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
                logging.info("segment [{}] :".format(idx_))
                logging.info("start op: [{}]  [{}]".format(block.ops[
                    self._segments[idx_]._start_idx].desc.type(), block.ops[
                        self._segments[idx_]._start_idx].desc.input_arg_names(
                        )))
                logging.info("end   op: [{}]  [{}]".format(block.ops[
                    self._segments[idx_]._end_idx].desc.type(), block.ops[
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
409 410 411 412 413 414
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
415 416 417 418 419 420

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
421 422 423
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
424 425 426
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
427
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
428 429 430 431 432 433 434 435 436 437 438
                             self.global_ring_id)
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
        if self.mp_degree * self.pp_degree == 1:
            # separate the sharding-hybrid senario to keep the accuracy
            gradientclip_helper = GradientClipHelper(self.sharding_ring_id)
            gradientclip_helper.prune_gradient_clip(
                block, self._shard, pure_dp_degree=1)
        else:
            gradientclip_helper = GradientClipHelper(self.global_ring_id)
            gradientclip_helper.prune_gradient_clip(
                block, self._shard, pure_dp_degree=self.dp_degree)
439 440 441 442 443 444 445 446 447 448 449

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

450
        # prune optimizer state and param
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
                    "c_allreduce_sum", "c_sync_comm_stream",
                    "c_calc_comm_stream", "c_gen_nccl_id", "c_comm_init"
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
498 499
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
500 501 502 503 504 505 506 507
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
508 509
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
510 511 512
        """
        if len(self._segments) < 1:
            return
513
        # sharding
514
        if self._segments[-1]._allreduce_vars:
515 516
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
517 518 519 520 521 522 523 524 525 526 527 528 529 530
            if self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
                    insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
            # gradient merge 
            else:
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

531
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
532
                                 self.sharding_ring_id,
533
                                 self._segments[-1]._allreduce_vars)
534 535 536 537
            # allreduce --> reduce 
            insert_reduce_ops(block, self._segments[-1]._end_idx,
                              self.sharding_ring_id,
                              self._segments[-1]._allreduce_vars, self._shard)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
575 576
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            if self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
            else:
597 598 599 600 601
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
618 619 620 621 622 623 624
            # gradient merge
            if self._gradient_merge_acc_step > 1:
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(), segment._start_idx,
                    shard_allredue_vars, self._shard)

625 626
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
627

628
            # step6: add all_reduce ops
629
            # dp
630 631 632 633 634 635 636 637
            if self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                    insert_allreduce_ops(block, segment._start_idx,
                                         self.dp_ring_id, shard_allredue_vars)
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
            else:
638 639 640
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
641 642 643
            # allreduce --> reduce 
            insert_reduce_ops(block, segment._start_idx, self.sharding_ring_id,
                              allreduce_vars, self._shard)
644 645 646 647

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
648 649 650
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
651
            insert_broadcast_ops(block, self._segments[0]._start_idx,
652
                                 self.sharding_ring_id,
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    def _build_group(self):
        """
        pre-assign ring ids
        mp: 0
        sharding: 1
        pure-dp: 2
        global: 3
        pp: >= 20
        if one parallelism is not enable: -1
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp        
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding)
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
729
            ]
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

        # sharding 
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
            # sharding + ...    
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
        # sharding-hybrid-dp as one senario of outter-pure-dp 
        assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
            self.mp_degree, self.sharding_degree, self.pp_degree,
            self.dp_degree, self.global_word_size)
        if self.dp_degree > 1:
            self.dp_ring_id = 2
            self.dp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree * self.pp_degree)
            dp_first_rank_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree * self.pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree * self.pp_degree)
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
                self.dp_group_endpoints.append(self.global_endpoints[
                    dp_first_rank_idx + dp_offset * i])
            assert self.current_endpoint in self.dp_group_endpoints
            logging.info("Hybrid DP mode turn on !")
791 792 793
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
794
            self.dp_group_endpoints = []
795

796 797
        # global group
        self.global_ring_id = 3
798 799 800

        logging.info("global word size: {}".format(self.global_word_size))
        logging.info("global rank: {}".format(self.global_rank))
801 802 803 804 805 806 807 808 809 810 811 812
        logging.info("global endpoints: {}".format(self.global_endpoints))
        logging.info("global ring id: {}".format(self.global_ring_id))
        logging.info("#####" * 6)

        logging.info("mp group size: {}".format(self.mp_degree))
        logging.info("mp rank: {}".format(self.mp_rank))
        logging.info("mp group id: {}".format(self.mp_group_id))
        logging.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logging.info("mp ring id: {}".format(self.mp_ring_id))
        logging.info("#####" * 6)

        logging.info("sharding group size: {}".format(self.sharding_degree))
813
        logging.info("sharding rank: {}".format(self.sharding_rank))
814
        logging.info("sharding group id: {}".format(self.sharding_group_id))
815 816
        logging.info("sharding group endpoints: {}".format(
            self.sharding_group_endpoints))
817 818 819 820 821 822 823 824 825
        logging.info("sharding ring id: {}".format(self.sharding_ring_id))
        logging.info("#####" * 6)

        logging.info("outter pure dp group size: {}".format(self.dp_degree))
        logging.info("outter pure dp rank: {}".format(self.dp_rank))
        logging.info("outter pure dp group endpoints: {}".format(
            self.dp_group_endpoints))
        logging.info("outter pure dp ring id: {}".format(self.dp_ring_id))
        logging.info("#####" * 6)
826 827

        return
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

        # sync within global group
        append_naive_sync(block, self.startup_prog_sync_var,
                          self.global_ring_id)

    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
                inputs={'X': grad_name,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                })

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=False,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1),
                       OP_ROLE_KEY: OpRole.Optimize})

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var,
                        'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False
                })

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize})
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
            amp 
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

        # allreduce grad@gradientmerge  
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False)
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

    def _sharding_gradient_merge(self, main_block):
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
            outputs={'Out': [],
                     'Scope': [step_scope]},
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })