reshape_mkldnn_op.cc 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16 17 18
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

19 20 21 22 23 24 25 26 27 28 29
namespace {
enum class ReshapeKernelOpName {
  reshape,
  reshape2,
  squeeze,
  squeeze2,
  flatten,
  flatten2,
};
}  // anonymous namespace

30 31 32
namespace paddle {
namespace operators {

J
jakpiase 已提交
33
static std::vector<int> extract_shape(
34
    const std::vector<const phi::DenseTensor*>& list_new_shape_tensor) {
J
jakpiase 已提交
35 36 37 38 39
  std::vector<int> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());

  for (const auto& tensor : list_new_shape_tensor) {
    PADDLE_ENFORCE_EQ(
40 41
        tensor->dims(),
        phi::make_ddim({1}),
J
jakpiase 已提交
42 43 44 45 46 47 48 49 50 51 52
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
    vec_new_shape.emplace_back(*tensor->data<int32_t>());
  }

  return vec_new_shape;
}

53
template <typename T, ReshapeKernelOpName op_name>
54 55 56 57 58 59 60 61
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
62
    const auto& dev_ctx = ctx.template device_context<phi::OneDNNContext>();
63 64
    const auto& onednn_engine = dev_ctx.GetEngine();

65 66
    auto* x = ctx.Input<phi::DenseTensor>("X");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
67

68 69
    framework::DDim x_dims, out_dims;
    InferInOutShape(ctx, x_dims, out_dims);
70

71
    auto x_vec_dims = phi::vectorize(x_dims);
72

73 74 75
    auto x_type = phi::funcs ::ToOneDNNDataType(x->dtype());
    phi::funcs::ReorderOneDNNHandler reorder_handler(
        x_vec_dims, x->dtype(), x_type, onednn_engine);
76 77

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
78
        x->mem_desc(), phi::funcs::to_void_cast(x->data<T>()));
79 80 81
    out->Resize(x_dims);  // to match x numel, format is changed later
    // reorder is done into a plain tag to allow usage with blocked formats
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
82
        out, phi::funcs::GetPlainOneDNNFormat(x_dims.size()), ctx.GetPlace());
83 84
    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);
85

86
    auto& astream = phi::OneDNNContext::tls().get_stream();
87 88 89 90 91
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

    astream.wait();

    out->Resize(out_dims);
92 93
    out->set_mem_desc(
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(out_dims)));
94 95
  }

96
  void InferInOutShape(const framework::ExecutionContext& ctx,
97 98
                       framework::DDim& x_dims,            // NOLINT
                       framework::DDim& out_dims) const {  // NOLINT
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeSqueezeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeSqueeze2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape kernel doesn not support that operator name"));
    }
  }

  void InferShapeReshapeOp(const framework::ExecutionContext& ctx,
125 126
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
127 128
    auto* x = ctx.Input<phi::DenseTensor>("X");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
129 130 131 132 133 134
    x_dims = x->dims();
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  void InferShapeReshape2Op(const framework::ExecutionContext& ctx,
135 136
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
137 138
    auto* out = ctx.Output<phi::DenseTensor>("Out");
    auto* xshape = ctx.Output<phi::DenseTensor>("XShape");
139
    auto xshape_dims = xshape->dims();
140
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
141 142 143 144 145 146
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  // in reshape1/2 ops  "ShapeTensor" has highest priority and "Shape" has
  // second highest priority
147 148 149 150
  void ChangeReshapeOutDimsIfNeeded(
      const framework::ExecutionContext& ctx,
      framework::DDim& x_dims,            // NOLINT
      framework::DDim& out_dims) const {  // NOLINT
151 152
    auto list_new_shape_tensor =
        ctx.MultiInput<phi::DenseTensor>("ShapeTensor");
153 154 155 156
    if (list_new_shape_tensor.size() > 0) {
      auto new_shape = extract_shape(list_new_shape_tensor);
      out_dims = ValidateShape(new_shape, x_dims);
    } else if (ctx.HasInput("Shape")) {
157
      auto* shape_tensor = ctx.Input<phi::DenseTensor>("Shape");
158 159 160 161 162 163 164 165 166
      auto* shape_data = shape_tensor->data<int>();

      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ValidateShape(shape, x_dims);
    }
  }

  void InferShapeSqueezeOp(const framework::ExecutionContext& ctx,
167 168
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
169
    auto* x = ctx.Input<phi::DenseTensor>("X");
170 171 172 173 174 175
    x_dims = x->dims();
    const auto& axes = ctx.Attr<std::vector<int>>("axes");
    out_dims = GetOutputShape(axes, x_dims, true);
  }

  void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
176 177
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
178 179
    auto* out = ctx.Output<phi::DenseTensor>("Out");
    auto* xshape = ctx.Output<phi::DenseTensor>("XShape");
180
    auto xshape_dims = xshape->dims();
181
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
182 183 184 185
    out_dims = out->dims();
  }

  void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
186 187
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
188
    auto x = ctx.Input<phi::DenseTensor>("X");
189 190
    x_dims = x->dims();
    auto axes = ctx.Attr<int>("axis");
191
    out_dims = phi::make_ddim(
L
Leo Chen 已提交
192
        FlattenKernel<phi::CPUContext, float>::GetOutputShape(axes, x_dims));
193 194
  }

195 196 197
 protected:
  static framework::DDim ValidateShape(const std::vector<int>& shape,
                                       const framework::DDim& in_dims) {
198 199
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
200 201
    bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                    in_dims_vec.cend(),
202 203 204 205 206 207 208 209 210 211 212 213
                                    [](int64_t i) { return i > 0; });
    // only one dimension can be set to -1, whose size will be automatically
    // infered
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE_EQ(
214 215
            unk_dim_idx,
            -1,
216 217 218
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
219 220
                phi::make_ddim(shape),
                i));
221 222 223
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE_LT(
224 225
            static_cast<int>(i),
            in_dims.size(),
226 227 228 229 230
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
231 232 233 234
                phi::make_ddim(shape),
                i,
                in_dims,
                in_dims.size()));
235 236
      } else {
        PADDLE_ENFORCE_GT(
237 238
            shape[i],
            0,
239 240 241 242
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
                "be negative except one unknown dimension. "
                "But received  shape = [%s], shape[%d] = %d.",
243 244 245
                phi::make_ddim(shape),
                i,
                shape[i]));
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (all_positive) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(
261 262
            output_shape[unk_dim_idx] * capacity,
            -in_size,
263 264 265 266 267 268
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
                "'shape' is [%s], known capacity of 'shape' is %d.",
269 270 271 272
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
273 274 275 276 277 278
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
279 280
            capacity,
            in_size,
281 282 283 284 285 286
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
287 288 289 290
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
291 292
      }
    }
293
    return phi::make_ddim(output_shape);
294 295 296
  }
};

297 298
template <typename T, ReshapeKernelOpName op_name>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
299 300 301 302 303 304 305
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
306
    const auto& dev_ctx = ctx.template device_context<phi::OneDNNContext>();
307 308
    const auto& onednn_engine = dev_ctx.GetEngine();

309 310
    auto* dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
311

312 313 314
    framework::DDim dx_dims;
    InferOutputShapeInGrad(ctx, dx_dims);

315
    auto dout_vec_dims = phi::vectorize(dout->dims());
316

317 318 319
    auto dout_type = phi::funcs::ToOneDNNDataType(dout->dtype());
    phi::funcs::ReorderOneDNNHandler reorder_handler(
        dout_vec_dims, dout->dtype(), dout_type, onednn_engine);
320 321

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
322
        dout->mem_desc(), phi::funcs::to_void_cast(dout->data<T>()));
323
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
324 325 326
        dx,
        phi::funcs::GetPlainOneDNNFormat(dout_vec_dims.size()),
        ctx.GetPlace());
327 328
    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);
329

330
    auto& astream = phi::OneDNNContext::tls().get_stream();
331 332 333
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();

334
    dx->Resize(dx_dims);
335
    reorder_dst_memory_p->get_desc().reshape(phi::vectorize(dx_dims));
336 337
  }

338
  void InferOutputShapeInGrad(const framework::ExecutionContext& ctx,
339
                              framework::DDim& x_dims) const {  // NOLINT
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape grad kernel doesn not support that operator name"));
    }
  }
364

365 366 367
  void InferShapeReshapeSqueezeGradOp(
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
368
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
369 370
    dx_dims = dx->dims();
  }
371

372
  void InferShapeReshape2Squeeze2Flatten2GradOp(
373 374
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
375
    auto xshape_dims = ctx.Input<phi::DenseTensor>("XShape")->dims();
376
    dx_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
377
  }
378

379
  void InferShapeFlattenGradOp(const framework::ExecutionContext& ctx,
380
                               framework::DDim& dx_dims) const {  // NOLINT
381
    dx_dims = ctx.Input<phi::DenseTensor>("X")->dims();
382 383 384 385
  }
};
}  // namespace operators
}  // namespace paddle
386

387 388
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
389 390 391
    squeeze,
    MKLDNN,
    paddle::platform::CPUPlace,
392 393 394 395 396
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
397 398 399
    squeeze_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
400 401 402 403 404
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
405 406 407
    squeeze2,
    MKLDNN,
    paddle::platform::CPUPlace,
408 409 410 411 412
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
413 414 415
    squeeze2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
416 417 418 419 420
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
421 422 423
    reshape,
    MKLDNN,
    paddle::platform::CPUPlace,
424 425 426 427 428
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
429 430 431
    reshape_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
432 433 434 435 436
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
437 438 439
    reshape2,
    MKLDNN,
    paddle::platform::CPUPlace,
440 441 442 443 444
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
445 446 447
    reshape2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
448 449 450 451 452
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
453 454 455
    flatten,
    MKLDNN,
    paddle::platform::CPUPlace,
456 457 458 459 460
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
461 462 463
    flatten_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
464 465 466 467 468
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
469 470 471
    flatten2,
    MKLDNN,
    paddle::platform::CPUPlace,
472 473 474 475 476
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten2>);

REGISTER_OP_KERNEL(
477 478 479
    flatten2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
480 481 482
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten2>);