strided_slice.h 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <utility>
#include <vector>

#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
23
#include "paddle/phi/core/tensor_array.h"
24
#include "paddle/phi/core/tensor_utils.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
namespace funcs {
static void StridedSliceOutDims(const std::vector<int64_t>& starts,
                                const std::vector<int64_t>& ends,
                                const std::vector<int64_t>& strides,
                                const std::vector<int>& axes,
                                const std::vector<int>& infer_flags,
                                const DDim in_dims,
                                const std::vector<int>& decrease_axis,
                                int64_t* out_dims_vector,
                                const size_t size,
                                bool infer_shape) {
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
  int64_t stride_index, start_index, end_index;
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

    PADDLE_ENFORCE_NE(
        stride_index,
        0,
        errors::InvalidArgument("stride index in StridedSlice operator is 0."));
    int64_t axis_size = in_dims[axes_index];

    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
Z
zyfncg 已提交
78
      start_index = std::max<int64_t>(start_index, 0);
79 80 81 82
    }
    if (end_index < 0) {
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
Z
zyfncg 已提交
83 84 85
        if (end_index < 0) {
          end_index = 0;
        }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      }
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool neg_dim_condition = ((stride_index < 0 && (start_index < end_index)) ||
                              (stride_index > 0 && (start_index > end_index)));
    PADDLE_ENFORCE_EQ(neg_dim_condition,
                      false,
                      errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

static void StridedSliceFunctor(int64_t* starts,
                                int64_t* ends,
                                int64_t* strides,
                                const int* axes,
                                int* reverse_axis,
                                const DDim dims,
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
    int64_t axis_size = dims[axes[axis]];
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(
          decrease_axis.begin(), decrease_axis.end(), axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
      starts[axis_index] = std::max<int64_t>(starts[axis_index], 0);
    }
    if (ends[axis_index] < 0) {
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
        if (ends[axis_index] < 0) {
          ends[axis_index] = 0;
        }
      }
    }
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }

    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        auto end_dim = axis_size - 1 < starts[axis_index] ? axis_size - 1
                                                          : starts[axis_index];
        auto offset = (end_dim - ends[axis_index]) % strides[axis_index];
        offset = offset == 0 ? strides[axis_index] : offset;

        starts[axis_index] = starts[axis_index] + offset;
        ends[axis_index] = ends[axis_index] + offset;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename Context, typename T, size_t D>
void StridedSliceCompute(const Context& dev_ctx,
                         const DenseTensor& x,
                         const std::vector<int>& axes,
186 187 188
                         const IntArray& starts,
                         const IntArray& ends,
                         const IntArray& strides,
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                         const std::vector<int>& infer_flags,
                         const std::vector<int>& decrease_axis,
                         DenseTensor* out) {
  auto& place = *dev_ctx.eigen_device();
  DDim in_dims = x.dims();

  auto starts_ = starts.GetData();
  auto ends_ = ends.GetData();
  auto strides_ = strides.GetData();

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto reverse_axis = Eigen::array<bool, D>();

  std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
  StridedSliceOutDims(starts_,
                      ends_,
                      strides_,
                      axes,
                      infer_flags,
                      in_dims,
                      decrease_axis,
                      out_dims_vector.data(),
                      axes.size(),
                      false);
  DDim out_dims(phi::make_ddim(out_dims_vector));

  std::vector<int> reverse_vector(starts_.size(), 0);
  StridedSliceFunctor(starts_.data(),
                      ends_.data(),
                      strides_.data(),
                      axes.data(),
                      reverse_vector.data(),
                      in_dims,
                      infer_flags,
                      decrease_axis,
                      starts_.size());

  for (size_t axis = 0; axis < D; axis++) {
    starts_indices[axis] = 0;
    ends_indices[axis] = out_dims[axis];
    strides_indices[axis] = 1;
    reverse_axis[axis] = false;
  }
  for (size_t axis = 0; axis < axes.size(); axis++) {
    int axis_index = axes[axis];
    starts_indices[axis_index] = starts_[axis];
    ends_indices[axis_index] = ends_[axis];
    strides_indices[axis_index] = strides_[axis];
    reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
  }

  auto out_dims_origin = out_dims;
  if (decrease_axis.size() > 0) {
    std::vector<int64_t> new_out_shape;
    for (size_t i = 0; i < decrease_axis.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          out_dims[decrease_axis[i]],
          1,
          errors::InvalidArgument(
              "the size of decrease dimension should be 1, but received %d.",
              out_dims[decrease_axis[i]]));
      out_dims_origin[decrease_axis[i]] = 0;
    }

    for (int i = 0; i < out_dims_origin.size(); ++i) {
      if (out_dims_origin[i] != 0) {
        new_out_shape.push_back(out_dims_origin[i]);
      }
    }
    if (new_out_shape.size() == 0) {
      new_out_shape.push_back(1);
    }
    out_dims_origin = phi::make_ddim(new_out_shape);
  }

  bool need_reverse = false;
  for (size_t axis = 0; axis < axes.size(); axis++) {
    if (reverse_vector[axis] == 1) {
      need_reverse = true;
      break;
    }
  }

  out->Resize(out_dims);
  dev_ctx.template Alloc<T>(out);
  auto in_t = EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(x);
  auto out_t = EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
      *out, out_dims);
  if (need_reverse) {
    DenseTensor tmp;
    tmp.Resize(out_dims);
    dev_ctx.template Alloc<T>(&tmp);

    auto tmp_t =
        EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(tmp);
    tmp_t.device(place) =
        in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    out_t.device(place) = tmp_t.reverse(reverse_axis);
  } else {
    out_t.device(place) =
        in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
  }

  if (decrease_axis.size() > 0) {
    out->Resize(out_dims_origin);
  }
}

template <typename Context, typename T, size_t D>
void StridedSliceCompute(const Context& dev_ctx,
301
                         const TensorArray& x,
302
                         const std::vector<int>& axes,
303 304 305
                         const IntArray& starts,
                         const IntArray& ends,
                         const IntArray& strides,
306 307
                         const std::vector<int>& infer_flags,
                         const std::vector<int>& decrease_axis,
308
                         TensorArray* out) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  const int64_t size = x.size();
  auto in_dims = phi::make_ddim({size});

  auto starts_ = starts.GetData();
  auto ends_ = ends.GetData();
  auto strides_ = strides.GetData();

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto reverse_axis = Eigen::array<bool, D>();

  std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
  StridedSliceOutDims(starts_,
                      ends_,
                      strides_,
                      axes,
                      infer_flags,
                      in_dims,
                      decrease_axis,
                      out_dims_vector.data(),
                      axes.size(),
                      false);
  DDim out_dims(phi::make_ddim(out_dims_vector));

  std::vector<int> reverse_vector(starts_.size(), 0);
  StridedSliceFunctor(starts_.data(),
                      ends_.data(),
                      strides_.data(),
                      axes.data(),
                      reverse_vector.data(),
                      in_dims,
                      infer_flags,
                      decrease_axis,
                      starts_.size());

  for (size_t axis = 0; axis < D; axis++) {
    starts_indices[axis] = 0;
    ends_indices[axis] = out_dims[axis];
    strides_indices[axis] = 1;
    reverse_axis[axis] = false;
  }
  for (size_t axis = 0; axis < axes.size(); axis++) {
    int axis_index = axes[axis];
    starts_indices[axis_index] = starts_[axis];
    ends_indices[axis_index] = ends_[axis];
    strides_indices[axis_index] = strides_[axis];
    reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
  }

  auto out_dims_origin = out_dims;
  if (decrease_axis.size() > 0) {
    std::vector<int64_t> new_out_shape;
    for (size_t i = 0; i < decrease_axis.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          out_dims[decrease_axis[i]],
          1,
          errors::InvalidArgument(
              "the size of decrease dimension should be 1, but received %d.",
              out_dims[decrease_axis[i]]));
      out_dims_origin[decrease_axis[i]] = 0;
    }

    for (int i = 0; i < out_dims_origin.size(); ++i) {
      if (out_dims_origin[i] != 0) {
        new_out_shape.push_back(out_dims_origin[i]);
      }
    }
    if (new_out_shape.size() == 0) {
      new_out_shape.push_back(1);
    }
    out_dims_origin = phi::make_ddim(new_out_shape);
  }

  bool need_reverse = false;
  for (size_t axis = 0; axis < axes.size(); axis++) {
    if (reverse_vector[axis] == 1) {
      need_reverse = true;
      break;
    }
  }

  PADDLE_ENFORCE_EQ(
      starts_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_op' is `TensorArray`, the "
          "dimension of start index  should be 1, but received %d.",
          starts_indices.size()));

  PADDLE_ENFORCE_EQ(
      ends_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_op' is `TensorArray`, the "
          "dimension of end index should be 1, but received %d.",
          ends_indices.size()));

  PADDLE_ENFORCE_EQ(
      strides_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_op' is `TensorArray`, the "
          "dimension of stride should be 1, but received %d.",
          strides_indices.size()));

  PADDLE_ENFORCE_EQ(
      out_dims_origin.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_op' is `TensorArray`, the "
          "dimension of Output should be 1, but received %d",
          out_dims_origin.size()));

423
  out->resize(out_dims_origin[0]);
424
  size_t const in_array_size = x.size();
425
  for (size_t i = 0; i < out->size(); i++) {
426 427 428 429 430
    size_t in_offset =
        (starts_indices[0] % in_array_size) + i * strides_indices[0];

    int64_t out_offset = i;
    if (need_reverse) {
431
      out_offset = out->size() - i - 1;
432 433
    }

434
    auto& in_tensor = x.at(in_offset);
435
    PADDLE_ENFORCE_GT(
436
        in_tensor.memory_size(),
437 438 439
        0,
        errors::PreconditionNotMet(
            "The input LoDTensorArray Input[%d] holds no memory.", in_offset));
440 441
    auto& out_tensor = out->at(out_offset);
    out_tensor.Resize(in_tensor.dims());
442 443

    phi::Copy<Context>(
444 445
        dev_ctx, in_tensor, dev_ctx.GetPlace(), false, &out_tensor);
    out_tensor.set_lod(in_tensor.lod());
446 447 448 449 450 451 452 453
  }
}

template <typename Context, typename T, size_t D>
void StridedSliceGradCompute(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& out_grad,
                             const std::vector<int>& axes,
454 455 456
                             const IntArray& starts,
                             const IntArray& ends,
                             const IntArray& strides,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                             const std::vector<int>& infer_flags,
                             const std::vector<int>& decrease_axis,
                             DenseTensor* x_grad) {
  auto& place = *dev_ctx.eigen_device();
  DDim out_dims = x.dims();

  auto starts_ = starts.GetData();
  auto ends_ = ends.GetData();
  auto strides_ = strides.GetData();

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

  auto reverse_axis = Eigen::array<bool, D>();
  std::vector<int> reverse_vector(starts_.size(), 0);

  StridedSliceFunctor(starts_.data(),
                      ends_.data(),
                      strides_.data(),
                      axes.data(),
                      reverse_vector.data(),
                      out_dims,
                      infer_flags,
                      decrease_axis,
                      starts_.size());

  for (size_t axis = 0; axis < D; axis++) {
    starts_indices[axis] = 0;
    ends_indices[axis] = out_dims[axis];
    strides_indices[axis] = 1;
  }
  for (size_t axis = 0; axis < axes.size(); axis++) {
    int axis_index = axes[axis];
    starts_indices[axis_index] = starts_[axis];
    ends_indices[axis_index] = ends_[axis];
    strides_indices[axis_index] = strides_[axis];
    reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
  }

  bool need_reverse = false;
  for (size_t axis = 0; axis < axes.size(); axis++) {
    if (reverse_vector[axis] == 1) {
      need_reverse = true;
      break;
    }
  }

  dev_ctx.template Alloc<T>(x_grad);
  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, x_grad, static_cast<T>(0));

  auto out_grad_dims = out_grad.dims();

  auto in_t =
      EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(out_grad);
  auto out_t = EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
      *x_grad, out_dims);
  if (need_reverse) {
    DenseTensor reverse_input;
    reverse_input.Resize(out_grad_dims);
    dev_ctx.template Alloc<T>(&reverse_input);

    auto reverse_in_t =
        EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            reverse_input);

    reverse_in_t.device(place) = in_t.reverse(reverse_axis);
    out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(place) = reverse_in_t;
  } else {
    out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(place) = in_t;
  }
}

template <typename Context, typename T, size_t D>
void StridedSliceGradCompute(const Context& dev_ctx,
535 536
                             const TensorArray& x,
                             const TensorArray& out_grad,
537
                             const std::vector<int>& axes,
538 539 540
                             const IntArray& starts,
                             const IntArray& ends,
                             const IntArray& strides,
541 542
                             const std::vector<int>& infer_flags,
                             const std::vector<int>& decrease_axis,
543
                             TensorArray* x_grad) {
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
  // Note(weixin):Since the shape of `framework::GradVarName("Input")` of
  // StridedSliceGrad cannot be calculated by
  // `framework::GradVarName("Output")`, the dim of "Input" is used to
  // calculate the output shape. when set it to inplace OP, there may be
  // some problems.
  const int64_t size = x.size();
  DDim out_dims = phi::make_ddim({size});

  auto starts_ = starts.GetData();
  auto ends_ = ends.GetData();
  auto strides_ = strides.GetData();

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

  auto reverse_axis = Eigen::array<bool, D>();
  std::vector<int> reverse_vector(starts_.size(), 0);

  StridedSliceFunctor(starts_.data(),
                      ends_.data(),
                      strides_.data(),
                      axes.data(),
                      reverse_vector.data(),
                      out_dims,
                      infer_flags,
                      decrease_axis,
                      starts_.size());

  for (size_t axis = 0; axis < D; axis++) {
    starts_indices[axis] = 0;
    ends_indices[axis] = out_dims[axis];
    strides_indices[axis] = 1;
  }
  for (size_t axis = 0; axis < axes.size(); axis++) {
    int axis_index = axes[axis];
    starts_indices[axis_index] = starts_[axis];
    ends_indices[axis_index] = ends_[axis];
    strides_indices[axis_index] = strides_[axis];
    reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
  }

  bool need_reverse = false;
  for (size_t axis = 0; axis < axes.size(); axis++) {
    if (reverse_vector[axis] == 1) {
      need_reverse = true;
      break;
    }
  }
  PADDLE_ENFORCE_EQ(
      starts_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
          "dimension of start index  should be 1, but received %d.",
          starts_indices.size()));
  PADDLE_ENFORCE_EQ(
      ends_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_op' is `TensorArray`, the "
          "dimension of end index should be 1, but received %d.",
          ends_indices.size()));
  PADDLE_ENFORCE_EQ(
      strides_indices.size(),
      1,
      errors::InvalidArgument(
          "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
          "dimension of stride should be 1, but received %d.",
          strides_indices.size()));

  PADDLE_ENFORCE_EQ(
      out_dims.size(),
      1,
      errors::InvalidArgument(
          "When the output of `strided_slice_grad_op` is `TensorArray`, "
          "the dimension of output should be 1, but received %d.",
          out_dims.size()));

623
  auto const d_out_array_size = x_grad->size();
624 625

  for (size_t j = 0; j < d_out_array_size; j++) {
626 627
    auto& dim = x.at(j).dims();
    auto& d_out_tensor = x_grad->at(j);
628 629 630 631 632 633 634 635 636 637 638

    int64_t sub = j - starts_indices[0];

    int64_t in_offset = sub / strides_indices[0];

    if (need_reverse) {
      in_offset = out_grad.size() - in_offset - 1;
    }

    if ((sub % strides_indices[0] == 0) && (0 <= in_offset) &&
        (static_cast<size_t>(in_offset) < out_grad.size())) {
639
      auto& in_tensor = out_grad.at(in_offset);
640
      PADDLE_ENFORCE_GT(
641
          in_tensor.memory_size(),
642 643 644 645 646 647
          0,
          errors::PreconditionNotMet(
              "The input LoDTensorArray Input[%d] holds no memory.",
              in_offset));

      phi::Copy<Context>(
648 649
          dev_ctx, in_tensor, dev_ctx.GetPlace(), false, &d_out_tensor);
      d_out_tensor.set_lod(in_tensor.lod());
650
    } else {
651
      d_out_tensor.Resize(dim);
652

653 654
      if (!d_out_tensor.IsInitialized()) {
        dev_ctx.template Alloc<T>(&d_out_tensor);
655 656 657
      }

      phi::funcs::SetConstant<Context, T> set_zero;
658
      set_zero(dev_ctx, &d_out_tensor, static_cast<T>(0));
659 660 661 662 663 664
    }
  }
}

}  // namespace funcs
}  // namespace phi