mq2007.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset

MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
D
dzhwinter 已提交
19
validation set and testing set.
20

D
dzhwinter 已提交
21
MQ2007 dataset from website
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators

"""

import os
import random
import functools
import rarfile
from common import download
import numpy as np

# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"


def __initialize_meta_info__():
D
dzhwinter 已提交
39
    """
40 41
  download and extract the MQ2007 dataset
  """
D
dzhwinter 已提交
42 43 44 45 46
    fn = fetch()
    rar = rarfile.RarFile(fn)
    dirpath = os.path.dirname(fn)
    rar.extractall(path=dirpath)
    return dirpath
47 48 49


class Query(object):
D
dzhwinter 已提交
50
    """
51 52 53 54 55 56 57 58 59 60 61 62 63 64
  queries used for learning to rank algorithms. It is created from relevance scores,  query-document feature vectors

  Parameters:
  ----------
  query_id : int
    query_id in dataset, mapping from query to relevance documents
  relevance_score : int 
    relevance score of query and document pair
  feature_vector : array, dense feature
    feature in vector format
  description : string
    comment section in query doc pair data
  """

D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76
    def __init__(self,
                 query_id=-1,
                 relevance_score=-1,
                 feature_vector=None,
                 description=""):
        self.query_id = query_id
        self.relevance_score = relevance_score
        if feature_vector is None:
            self.feature_vector = []
        else:
            self.feature_vector = feature_vector
        self.description = description
77

D
dzhwinter 已提交
78 79 80 81 82 83 84 85
    def __str__(self):
        string = "%s %s %s" % (str(self.relevance_score), str(self.query_id),
                               " ".join(str(f) for f in self.feature_vector))
        return string

    # @classmethod
    def _parse_(self, text):
        """
86 87
    parse line into Query
    """
D
dzhwinter 已提交
88 89 90 91
        comment_position = text.find('#')
        line = text[:comment_position].strip()
        self.description = text[comment_position + 1:].strip()
        parts = line.split()
92 93 94 95
        if len(parts) != 48:
            sys.stdout.write("expect 48 space split parts, get %d" %
                             (len(parts)))
            return None
D
dzhwinter 已提交
96 97 98 99 100 101 102 103
        # format : 0 qid:10 1:0.000272 2:0.000000 .... 
        self.relevance_score = int(parts[0])
        self.query_id = int(parts[1].split(':')[1])
        for p in parts[2:]:
            pair = p.split(':')
            self.feature_vector.append(float(pair[1]))
        return self

104 105

class QueryList(object):
D
dzhwinter 已提交
106
    """
107 108
  group query into list, every item in list is a Query
  """
D
dzhwinter 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    def __init__(self, querylist=None):
        self.query_id = -1
        if querylist is None:
            self.querylist = []
        else:
            self.querylist = querylist
            for query in self.querylist:
                if self.query_id == -1:
                    self.query_id = query.query_id
                else:
                    if self.query_id != query.query_id:
                        raise ValueError("query in list must be same query_id")

    def __iter__(self):
        for query in self.querylist:
            yield query

    def __len__(self):
        return len(self.querylist)

130 131 132
    def __getitem__(self, i):
        return self.querylist[i]

D
dzhwinter 已提交
133 134 135 136 137 138
    def _correct_ranking_(self):
        if self.querylist is None:
            return
        self.querylist.sort(key=lambda x: x.relevance_score, reverse=True)

    def _add_query(self, query):
139
        if self.query_id == -1:
D
dzhwinter 已提交
140
            self.query_id = query.query_id
141
        else:
D
dzhwinter 已提交
142 143 144
            if self.query_id != query.query_id:
                raise ValueError("query in list must be same query_id")
        self.querylist.append(query)
145 146


147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
def gen_plain_txt(querylist):
    """
  gen plain text in list for other usage
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  query_id : np.array, shape=(samples_num, )
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
    """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield querylist.query_id, query.relevance_score, np.array(
            query.feature_vector)


def gen_point(querylist):
    """
  gen item in list for point-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield query.relevance_score, np.array(query.feature_vector)


187
def gen_pair(querylist, partial_order="full"):
D
dzhwinter 已提交
188
    """
189 190 191 192 193
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList
  pairtial_order : "full" or "neighbour"
194
    there is redudant in all possiable pair combinations, which can be simplifed
195 196 197 198 199 200 201 202
  gen pairs for neighbour items or the full partial order pairs

  return :
  ------
  label : np.array, shape=(1)
  query_left : np.array, shape=(1, feature_dimension)
  query_right : same as left
  """
D
dzhwinter 已提交
203 204 205
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
206 207 208
    labels = []
    docpairs = []

D
dzhwinter 已提交
209
    # C(n,2)
210 211 212 213
    for i in range(len(querylist)):
        query_left = querylist[i]
        for j in range(i + 1, len(querylist)):
            query_right = querylist[j]
D
dzhwinter 已提交
214
            if query_left.relevance_score > query_right.relevance_score:
D
dongzhihong 已提交
215
                labels.append([1])
216 217 218 219 220
                docpairs.append([
                    np.array(query_left.feature_vector),
                    np.array(query_right.feature_vector)
                ])
            elif query_left.relevance_score < query_right.relevance_score:
D
dongzhihong 已提交
221
                labels.append([1])
222 223 224 225 226
                docpairs.append([
                    np.array(query_right.feature_vector),
                    np.array(query_left.feature_vector)
                ])
    for label, pair in zip(labels, docpairs):
D
dongzhihong 已提交
227
        yield np.array(label), pair[0], pair[1]
D
dzhwinter 已提交
228

229 230

def gen_list(querylist):
D
dzhwinter 已提交
231
    """
D
dzhwinter 已提交
232
  gen item in list for list-wise learning to rank algorithm
233 234 235 236 237 238 239 240 241
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
D
dzhwinter 已提交
242 243
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
244
    querylist._correct_ranking_()
D
dzhwinter 已提交
245 246 247
    relevance_score_list = [query.relevance_score for query in querylist]
    feature_vector_list = [query.feature_vector for query in querylist]
    yield np.array(relevance_score_list).T, np.array(feature_vector_list)
248 249


250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
def query_filter(querylists):
    """
    filter query get only document with label 0.
    label 0, 1, 2 means the relevance score document with query
    parameters :
      querylist : QueyList list

    return :
      querylist : QueyList list
    """
    filter_query = []
    for querylist in querylists:
        relevance_score_list = [query.relevance_score for query in querylist]
        if sum(relevance_score_list) != .0:
            filter_query.append(querylist)
    return filter_query


268
def load_from_text(filepath, shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
269
    """
270 271
  parse data file into querys
  """
D
dzhwinter 已提交
272 273 274 275 276 277 278 279
    prev_query_id = -1
    querylists = []
    querylist = None
    fn = __initialize_meta_info__()
    with open(os.path.join(fn, filepath)) as f:
        for line in f:
            query = Query()
            query = query._parse_(line)
280 281
            if query == None:
                continue
D
dzhwinter 已提交
282 283 284 285 286 287
            if query.query_id != prev_query_id:
                if querylist is not None:
                    querylists.append(querylist)
                querylist = QueryList()
                prev_query_id = query.query_id
            querylist._add_query(query)
288 289
    if querylist is not None:
        querylists.append(querylist)
D
dzhwinter 已提交
290 291 292
    if shuffle == True:
        random.shuffle(querylists)
    return querylists
293 294 295


def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
D
dzhwinter 已提交
296
    """
297 298 299 300 301 302 303 304 305 306 307 308
  Parameters
  --------
  filename : string
  shuffle : shuffle query-doc pair under the same query
  fill_missing : fill the missing value. default in MQ2007 is -1
  
  Returns
  ------
  yield
    label query_left, query_right  # format = "pairwise"
    label querylist # format = "listwise"
  """
309 310 311
    querylists = query_filter(
        load_from_text(
            filepath, shuffle=shuffle, fill_missing=fill_missing))
D
dzhwinter 已提交
312
    for querylist in querylists:
313 314 315 316 317
        if format == "plain_txt":
            yield next(gen_plain_txt(querylist))
        elif format == "pointwise":
            yield next(gen_point(querylist))
        elif format == "pairwise":
D
dzhwinter 已提交
318 319 320 321 322 323 324
            for pair in gen_pair(querylist):
                yield pair
        elif format == "listwise":
            yield next(gen_list(querylist))


train = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/train.txt")
325
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")
D
dzhwinter 已提交
326

327 328

def fetch():
D
dzhwinter 已提交
329
    return download(URL, "MQ2007", MD5)
330 331


D
dzhwinter 已提交
332 333
if __name__ == "__main__":
    fetch()
334 335 336 337
    mytest = functools.partial(
        __reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
    for label, query in mytest():
        print label, query