compare_kernel.cu 4.9 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/compare_kernel.h"
#include "paddle/phi/kernels/impl/compare_kernel_impl.h"

#include <thrust/fill.h>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"

namespace phi {

template <typename T>
struct BitwiseAdd {
  // Bitwise add operator, returns <tt>a + b</tt>
  inline T initial() { return static_cast<T>(true); }

  __host__ __device__ __forceinline__ T operator()(const T& a,
                                                   const T& b) const {
    return a & b;
  }
};

template <typename T,
          typename Context,
          typename Functor,
          typename InverseFunctor>
inline void CompareKernelImpl(const Context& ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              int axis,
                              DenseTensor* out) {
  ctx.template Alloc<bool>(out);
  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{out};
  funcs::BroadcastKernel<ElementwiseType::kBinary, T, bool>(
      ctx, ins, &outs, axis, Functor());
}

template <typename T, typename Context, typename Functor>
inline void CompareAllKernelImpl(const Context& ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 DenseTensor* out) {
  bool* out_data = ctx.template Alloc<bool>(out);

  if (x.dims() != y.dims()) {
    thrust::device_ptr<bool> out_dev_ptr(out_data);
    thrust::fill(out_dev_ptr, out_dev_ptr + 1, false);
    return;
  }

  DenseTensor tmp;
  tmp.Resize(x.dims());
  ctx.template Alloc<bool>(&tmp);

  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{&tmp};
  funcs::ElementwiseKernel<bool>(ctx, ins, &outs, Functor());

  // Reduce by 'bitwise and' operator
  std::vector<int> reduce_dims;
  reduce_dims.resize(tmp.dims().size());
  for (int i = 0; i < reduce_dims.size(); ++i) {
    reduce_dims[i] = i;
  }
83 84
  funcs::ReduceKernel<bool, bool, BitwiseAdd, kps::IdentityFunctor<bool>>(
      ctx, tmp, out, kps::IdentityFunctor<bool>(), reduce_dims);
F
From00 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

}  // namespace phi

PD_REGISTER_KERNEL(less_than,
                   GPU,
                   ALL_LAYOUT,
                   phi::LessThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(less_equal,
                   GPU,
                   ALL_LAYOUT,
                   phi::LessEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(greater_than,
                   GPU,
                   ALL_LAYOUT,
                   phi::GreaterThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(greater_equal,
                   GPU,
                   ALL_LAYOUT,
                   phi::GreaterEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(equal,
                   GPU,
                   ALL_LAYOUT,
                   phi::EqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(not_equal,
                   GPU,
                   ALL_LAYOUT,
                   phi::NotEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}

PD_REGISTER_KERNEL(equal_all,
                   GPU,
                   ALL_LAYOUT,
                   phi::EqualAllKernel,
                   bool,
                   int,
                   int64_t,
                   float,
                   double) {}