utils.py 79.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
16 17
import logging
import os
18
import threading
19
import warnings
20
from functools import reduce
21

22 23 24
import numpy as np

import paddle
25 26 27 28
from paddle.fluid.framework import Variable
from paddle.fluid.io import is_belong_to_optimizer, is_parameter
from paddle.framework import core

29
from .dist_attribute import OperatorDistAttr, TensorDistAttr
30
from .process_group import get_all_process_groups
31
from .process_mesh import ProcessMesh
32

33
OpRole = core.op_proto_and_checker_maker.OpRole
34 35
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

Z
zhaoyingli 已提交
36
__no_shape_var_type__ = [
37 38
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
39 40 41
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
42 43
]

44 45
__not_naive_data_parallel_op__ = ["expand_v2"]

46

47 48 49 50 51 52 53
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
54 55
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
56 57 58 59 60
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
101
        elif process_mesh.shape[process_mesh.dim_names.index(shard)] == 1:
Z
zhaoyingli 已提交
102
            dims_mapping.append(-1)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
130 131 132 133 134
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
135 136 137 138
            return False
    return True


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
160 161 162 163 164 165
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
166 167 168
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
169 170
            list(dim_mappings)
        )
171 172 173 174 175 176 177 178 179 180 181 182
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
183 184 185 186
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
187 188
                compatible_process_mesh = process_mesh
            else:
189
                return None
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
225
    from .dist_context import get_default_distributed_context
226

227 228
    if dist_context is None:
        dist_context = get_default_distributed_context()
229 230 231
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
232 233
    for block in program.blocks:
        for tensor in block.vars.values():
234 235
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
236 237
                tensor
            )
238
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
239 240
                return False
        for op in block.ops:
241 242 243
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
244 245 246 247
                return False
    return True


248
def print_program_with_dist_attr(program, dist_context=None):
249 250 251 252 253 254
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
255 256 257 258
    from .dist_context import (
        get_default_distributed_context,
        set_default_distributed_context,
    )
259

260 261
    if dist_context is None:
        dist_context = get_default_distributed_context()
262
        print(program, flush=True)
263 264 265
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
266
        print(program, flush=True)
267 268
        set_default_distributed_context(original_default_context)
    lock.release()
269 270 271 272


def _get_comm_group(processes, shape, axis, rank):
    """
273
    Given a rank and the processes mesh the rank belongs to,
274 275 276 277 278 279 280 281 282 283 284
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
285 286
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
287 288
        rank, processes
    )
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


306 307
def _get_idx_in_axis(processes, shape, axis, rank):
    """
308
    Given a rank and the processes mesh the rank belongs to,
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


325 326 327 328
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

329
    it use Row-major order for dimension conversion.
330
    so it has:  [most_significant_dim, ..., least_significant_dim]
331
    assume:
332 333 334 335

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

336
    linear_idx of a n dimensional coordinate is:
337 338

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
339 340
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
341
        ...
342
        I[1]   * (                                       S[0]) +
343 344 345 346
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
347
    # that the processes in mesh are
348
    #    1. starts from 0
349 350
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
351
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
352
    # if you want a more general mapping, you should use cartesian product
353 354 355 356

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
357 358
        mesh_shape, coordinate
    )
359
    for i in range(len(mesh_shape)):
360 361 362 363 364 365 366 367 368 369
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
387
    assume:
388 389 390 391 392 393 394 395 396 397 398 399 400 401

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
402 403
        linear_idx
    )
404 405 406
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
407 408
        mesh_shape, linear_idx
    )
409 410 411 412 413 414 415 416 417 418 419

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
420 421


422
def _get_corresponding_rank(dist_context, target_mesh, rank):
423 424 425 426 427 428

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
429
    for mesh in dist_context.process_meshes:
430
        if rank in mesh.process_ids and mesh.shape == target_mesh.shape:
431
            coordinate = _linear_idx2coordinate(
432
                mesh.shape, mesh.process_ids.index(rank)
433
            )
434 435
            break

436 437 438
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
439 440
        return target_mesh.process_ids[
            _coordinate2linear_idx(mesh.shape, coordinate)
441
        ]
442
    else:
443
        return target_mesh.process_ids[0]
444 445


446 447
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
448
    mapping = dist_attr.dims_mapping
449
    mesh = dist_attr.process_mesh.shape
450 451 452
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
453 454
        var_shape, mapping
    )
455 456 457 458 459 460 461 462 463 464
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


465
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
466
    from .dist_context import get_default_distributed_context
467

468 469
    if dist_context is None:
        dist_context = get_default_distributed_context()
470 471 472

    for var in dist_main_prog.list_vars():
        if var.is_data:
473
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
474 475
                var
            )
476 477
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
478
            dim_mapping = tensor_dist_attr.dims_mapping
479
            dim_mapping = [-1] * len(dim_mapping)
480 481
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
482 483


484
def _update_addition_info(addition_info):
485
    """Update default addition_info with inputs"""
486
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
487
    if not addition_info:
488
        return add_info
489
    elif not isinstance(addition_info, dict):
490 491 492 493
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
494
    else:
495 496 497 498
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
499
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
500 501 502
                        str(item)
                    )
                )
503 504 505
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
506 507
                    "but got '{}'.".format(str(type(value)))
                )
508 509
            add_info[item] = value
        return add_info
510 511 512


def _check_valid_path(file_path):
513
    """Validity check of input file path"""
514 515 516
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
517 518
        for file in file_path:
            if not isinstance(file, str):
519 520 521 522
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
523
            if not os.path.exists(file):
524
                raise ValueError(
525 526
                    "The file path '{}' does not exist.".format(file)
                )
527 528
        return file_path
    else:
529 530 531 532
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
533 534 535 536 537 538


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
539 540 541 542
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
543 544 545 546 547
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
548 549
                    "but got '{}'.".format(str(type(name)))
                )
550 551 552
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
553 554
                    "but got '{}'.".format(str(type(value)))
                )
555 556 557 558 559 560 561
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
562 563 564 565
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
566 567 568 569 570
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
571 572
                    "but got '{}'.".format(str(type(name)))
                )
573 574 575
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
576 577
                    "but got '{}'".format(str(type(value)))
                )
578 579 580 581 582
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
583 584
                    "but got {}.".format(str(value.keys()))
                )
585
        return dist_attr
586 587


588 589 590 591 592 593 594 595
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
596 597
    """
    Save model parameter state, optimzer state, distributed attribute and
598 599 600 601 602
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
603 604 605
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
606
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
607
        dist_context(DistributedContext ,optional): collect related distributed information for program
608 609 610 611 612 613 614

    Returns:
        None

    Examples:
        .. code-block:: python

615 616 617 618
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
619
    """
620 621 622 623 624 625 626 627
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

628
    if not is_integrated:
629 630
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
631 632 633
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
634 635
            "Integrating parameter has not been implemented."
        )
636 637


638
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
639
    """
640
    Load parameter, optimizer, distributed attribute and addition_info.
641 642

    Args:
643 644
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
645 646

    Returns:
647 648
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
649
        addition_info(dict): additional information user saved in last training.
650 651 652 653 654 655 656

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

657
            ckpt_path = ['./model_state_rank0.pdmodel',
658
                         './model_state_rank1.pdmodel']
659
            dist_attr_path = ['./dist_attr_rank0.pdattr',
660 661 662
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
663 664 665 666
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
667 668 669 670 671 672 673 674

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


675 676 677
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
678
    """
679 680 681 682 683 684 685 686 687 688
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
689

690 691
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
692 693 694 695 696

    Examples:
        .. code-block:: python

            exe.run(startup_program)
697
            ckpt_path = ['./model_state_rank0.pdmodel',
698
                         './model_state_rank1.pdmodel']
699
            dist_attr_path = ['./dist_attr_rank0.pdattr',
700 701
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
702
    """
703
    from .dist_context import get_default_distributed_context
704

705
    assert isinstance(program, paddle.fluid.framework.Program)
706 707 708 709
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
710 711 712 713 714 715 716
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
717 718 719
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
720 721 722 723 724 725
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
726
    """
727 728 729 730 731 732
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
733
    assert isinstance(param_dict, dict)
734
    assert program and isinstance(program, paddle.fluid.framework.Program)
735 736
    if not param_dict:
        return
737 738 739 740
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
741
    """Save distributed attribute of all parameters"""
742 743
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
744 745 746
    dist_attr_name = os.path.join(
        dist_attr_path, "dist_attr_rank{}.pdattr".format(rank_id)
    )
747 748
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
749
        "world_size": paddle.distributed.get_world_size(),
750 751
    }
    paddle.save(dist_attr_dict, dist_attr_name)
752
    logging.info(
753 754
        "Already saved distributed attribute to '{}'.".format(dist_attr_path)
    )
755 756 757


def _load_distributed_attribute(dist_attr_path):
758
    """Load parameters' distributed attribute from dist_attr_path"""
759 760 761 762
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
763 764 765
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
766 767 768 769 770 771 772 773
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
774
    """Save parameters' state_dict"""
775
    rank = paddle.distributed.get_rank()
776 777 778
    ckpt_file_name = os.path.join(
        checkpoint_path, "model_state_rank{}.pdmodel".format(rank)
    )
779 780 781
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
782
        "addition_info": addition_info,
783 784 785 786 787 788
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
789
    """Load parameters' state_dict from checkpoint_path"""
790 791
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
792
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
793
        pre_world_size = state_dict_info["world_size"]
794 795 796
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
797 798 799 800 801 802 803 804 805 806
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
807
        "addition_info": addition_info,
808 809 810 811 812
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
813
    """
814 815 816 817 818 819 820 821 822 823 824 825 826 827
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
828 829
                var
            )
830 831 832
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
833 834
                "process_shape": process_mesh.shape,
                "process_group": process_mesh.process_ids,
835
                "dims_mapping": dims_mapping,
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
853 854 855 856 857
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
858 859
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
860 861 862 863 864 865
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
866
        if not isinstance(value, list) or not all(
867 868
            isinstance(v, np.ndarray) for v in value
        ):
869 870
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
871 872
                "and its type should be 'list(numpy.ndarray)'."
            )
873

874 875 876
    if cur_dist_attr is None:
        return {}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
892
            dist_param_dict[var_name] = param
893 894 895 896 897 898
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
899
            complete_param = _merge_parameter_with_dist_attr(
900 901
                pre_param, pre_attr
            )
902 903 904
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
905
            dist_param_dict[var_name] = complete_param
906 907

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
908
            sliced_param = _slice_parameter_with_dist_attr(
909 910
                complete_param, cur_attr
            )
911 912 913 914 915 916 917 918
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
919 920
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
921 922 923
                str(param_not_in_pre)
            )
        )
924 925
    if param_not_in_cur:
        warnings.warn(
926
            "Parameters '{}' are not found in current training process.".format(
927 928 929
                str(param_not_in_cur)
            )
        )
930 931 932 933 934

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
935
    """Merge parameter with distributed attribute"""
936
    from .reshard import Resharder
937 938 939 940 941

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
942 943 944
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
945 946
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
947
    merged_partiton = []
948
    for process in process_group:
949
        partition_index = Resharder.compute_partition_index(
950 951
            process, complete_shape, dims_mapping, process_shape, process_group
        )
952
        index = process_group.index(process)
Z
zhaoyingli 已提交
953 954
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
955 956 957 958 959 960
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
961

962 963 964
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
965
    complete_param = partition_param_list[0][0]
966 967 968 969
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
970 971 972 973
    """Slice parameter with distributed attribute"""
    param = (
        np.array(param) if isinstance(param, paddle.fluid.LoDTensor) else param
    )
974 975 976 977
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
978 979 980 981 982 983
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
984 985
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
986 987 988
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
989
    sliced_param = sliced_param_list[sliced_param_index]
990 991 992
    return sliced_param


993 994 995
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
1013
    from .reshard import Resharder
1014

Z
zhaoyingli 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1024 1025
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1026
    else:
1027 1028
        i = 0
        while i < len(partition_param_list):
1029 1030 1031 1032 1033 1034 1035
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1036 1037 1038
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1039 1040
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1041 1042
                else:
                    new_param = np.concatenate(
1043 1044
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1045 1046

                partition_param_list.pop(i)
1047 1048 1049 1050 1051 1052
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1080 1081 1082
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1083 1084 1085 1086
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1087 1088
            _slice_parameter(param, partition_index_list, length - 1)
        )
1089 1090 1091
    return sliced_param_list


1092 1093 1094
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1113
            # slice_param:
1114 1115 1116 1117 1118 1119
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1120
    from .reshard import Resharder
1121

1122 1123 1124
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1125 1126 1127 1128 1129 1130
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1131 1132
        if slice_shape == 1:
            index = partition_index[i][0]
1133 1134 1135 1136
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1137 1138


1139 1140 1141
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1142 1143 1144 1145 1146
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1161
    from .reshard import Resharder
1162 1163 1164

    split_indices_list = []
    for process in process_group:
1165
        partition_index = Resharder.compute_partition_index(
1166 1167
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1168 1169 1170 1171 1172 1173
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1174 1175 1176 1177 1178 1179
        map(
            lambda x, y: list(set(x) - set([y]) - set([0])),
            split_indices_list,
            complete_shape,
        )
    )
1180 1181
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1182 1183 1184


def set_grad_var_shape(program, dist_context):
1185 1186
    from paddle.distributed.fleet.meta_optimizers.common import OpRole

Z
zhaoyingli 已提交
1187 1188 1189 1190
    from .operators.common import infer_shape

    block = program.global_block()
    vars = block.vars
1191 1192 1193 1194 1195 1196 1197 1198
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1199 1200 1201 1202
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1203
            appended_grad_times += 1
J
JZ-LIANG 已提交
1204 1205 1206 1207

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1208
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1209 1210
            continue

1211 1212 1213 1214 1215 1216 1217 1218 1219
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1220 1221
                    var_name
                ]
1222
            else:
1223
                forward_var_name = var_name[: var_name.find("@GRAD")]
1224 1225

            if op.type in [
1226 1227 1228 1229 1230
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1231 1232
            ]:
                forward_var_name = op.input_arg_names[0]
1233 1234 1235 1236 1237
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1238 1239 1240 1241
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1242
                        input_name = output_name[: output_name.find("@GRAD")]
1243 1244 1245 1246 1247
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1261
                "fused_softmax_mask_upper_triangle_grad",
1262 1263
                "flatten_contiguous_range_grad",
                "relu_grad",
1264 1265
                "exp_grad",
                "sigmoid_grad",
1266 1267
            ]
            forward_list = [
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1284 1285
                "exp",
                "sigmoid",
1286 1287 1288 1289 1290
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1291 1292 1293 1294 1295 1296 1297 1298 1299
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1300 1301 1302
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1303 1304 1305 1306 1307
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1308
            forward_var = vars[forward_var_name]
1309 1310 1311
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1312 1313
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1314 1315 1316 1317 1318 1319
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1320 1321 1322

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1323 1324


1325 1326
def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1327 1328 1329
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1330 1331 1332


def is_backward_op(op):
1333 1334 1335
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1336 1337


1338
def is_optimize_op(op):
1339 1340 1341
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1342 1343


1344
def is_lr_sched_op(op):
1345 1346 1347
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1348 1349


J
JZ-LIANG 已提交
1350
def is_loss_op(op):
1351 1352 1353
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1354 1355


1356 1357 1358 1359 1360 1361 1362
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1363
def is_gradient_clip_op(op):
1364 1365 1366
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1367 1368


1369 1370 1371 1372
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1373 1374 1375 1376
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1377 1378 1379
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1380 1381 1382 1383 1384 1385 1386
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
1387
    tensor_dist_attr = TensorDistAttr()
J
JZ-LIANG 已提交
1388 1389
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    if isinstance(process_mesh, (list, np.ndarray)):
        tensor_dist_attr.process_mesh = ProcessMesh(process_mesh)
    elif isinstance(process_mesh, core.ProcessMesh):
        tensor_dist_attr.process_mesh = process_mesh
    else:
        raise ValueError(
            "{} must be a instance of ProcessMesh or list, but receive {}".format(
                process_mesh, type(process_mesh)
            )
        )
1400 1401 1402
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1403 1404 1405 1406
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1407
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1408 1409
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1410 1411 1412
    assert process_mesh is not None
    assert ref_mapping is not None

1413
    new_op_dist_attr = OperatorDistAttr()
J
JZ-LIANG 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


1424 1425 1426
def naive_set_dist_op_attr_for_program_by_mesh(
    new_op, process_mesh, ctx, is_recompute=False
):
1427 1428 1429
    # hack to skip coalesce var for dist attr
    if not is_recompute:
        return
1430 1431
    assert process_mesh is not None

1432
    new_op_dist_attr = OperatorDistAttr()
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

    for input_varname in new_op.desc.input_arg_names():
        var = ctx.serial_main_program.global_block().var(input_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
    for output_varname in new_op.desc.output_arg_names():
        var = ctx.serial_main_program.global_block().var(output_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_output_dims_mapping(output_varname, mapping)

    new_op_dist_attr.process_mesh = process_mesh
    new_op_dist_attr.is_recompute = is_recompute
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1467 1468 1469 1470 1471
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
C
caozhou 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1481 1482 1483 1484 1485
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1486 1487
            batch_dim_mappings.append(dims_mapping[0])
        else:
1488 1489 1490 1491 1492
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1493 1494
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1495 1496 1497 1498 1499
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1500 1501 1502
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1503 1504 1505
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1551 1552 1553
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1565 1566 1567
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1568 1569 1570 1571 1572 1573 1574

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1575 1576 1577
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1578 1579 1580 1581 1582 1583
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1584 1585 1586
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1587 1588 1589 1590 1591
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1592 1593 1594
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1595 1596 1597
            changed = True

    return changed
1598 1599


1600 1601 1602
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1603
    "Get all distributed main programs by dist_context."
1604
    from .dist_context import DistributedOperatorContext
1605

1606
    cluster = serial_program_info.cluster
1607
    copied_parallelizer = copy.deepcopy(parallelizer)
1608
    all_dist_main_program = []
1609 1610 1611 1612 1613
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1614 1615 1616
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1617 1618 1619 1620 1621 1622 1623
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1624 1625 1626 1627 1628 1629
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1630 1631 1632
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1673 1674 1675
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1676
            if variable in info:
1677
                arg_name_lower = info[: info.find(variable) - 1]
1678 1679
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1680 1681 1682 1683 1684 1685 1686 1687
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1688 1689 1690 1691
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
1692 1693 1694
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1695 1696 1697 1698 1699
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1700 1701
                                lambda x, y: x * y, var.shape
                            )
1702
                        break
1703 1704 1705
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1706

1707 1708 1709
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1710 1711
        return actual_runtime

1712
    import paddle.cost_model as cm
1713

1714
    cost_model = cm.CostModel()
1715 1716 1717 1718 1719 1720 1721 1722 1723
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1724
        "elementwise_div": "divide",
1725 1726 1727
    }

    standalone_cost_data = []
1728 1729
    # skip ops
    not_enum_ops = [
1730 1731 1732 1733
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1734
    ]
1735 1736 1737 1738 1739 1740 1741 1742
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1743 1744 1745 1746 1747
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1748 1749 1750 1751 1752
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1753 1754 1755
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1756 1757 1758
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1759 1760 1761
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1762 1763 1764
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1765 1766 1767 1768 1769
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1770 1771 1772 1773 1774 1775 1776 1777 1778
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1795 1796 1797 1798 1799 1800 1801 1802


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1803 1804 1805 1806 1807


def debug_program(program, path, name):

    filename = os.path.join(
1808 1809
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1810 1811
    with open(filename, 'w') as f:
        f.write(str(program))
1812 1813 1814 1815 1816 1817 1818


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1831 1832


1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
    return reduce(lambda x, y: x * y, var.shape)


Z
zhaoyingli 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1855 1856 1857
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
            " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(
                type(optimizer)
Z
zhaoyingli 已提交
1858
            )
1859
        )
1860 1861 1862 1863


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    from ..collective import _get_global_env

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1890 1891
                    recv_rank
                ].split(":")
1892
                connect_port = int(recv_rank_port) + magic_num
1893 1894 1895
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1896 1897 1898 1899 1900 1901
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1902 1903 1904 1905
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1906
                else:
1907 1908 1909 1910 1911
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1923 1924
                            str(cur_rank).encode("utf-8")
                        )
1925
                        client_sockets[send_rank].close()
1926 1927 1928 1929 1930
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1931 1932 1933
                        break
        process_group.instantiate()
    server_socket.close()
1934 1935


1936 1937 1938 1939
def is_recompute_op(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc" in op.attr(
        'op_namescope'
    )
1940

1941 1942 1943 1944 1945

def set_recompute_segments(model, losses, strategy, program):
    from ..passes.auto_parallel_recompute import RecomputeState

    if not losses:
1946 1947 1948 1949 1950 1951 1952 1953 1954
        return

    recompute = strategy.recompute
    if not recompute.enable:
        return

    # NOTE: hack to enable recompute in engine api for GPT-3
    # TODO support more PaddleNLP/CV models here
    # extract ckpts by specific model
1955
    ckpts = []
1956
    if isinstance(model, paddle.nn.Layer):
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
        if (
            hasattr(model, "gpt")
            and model.__class__.__name__
            in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]
            and hasattr(model.gpt, "checkpoints")
        ):
            ckpts = model.gpt.checkpoints
1967 1968 1969
            # last recompute segment is not need to recompute
            if len(ckpts) > 2:
                ckpts.pop()
1970
        else:
1971
            ckpts = recompute.checkpoints
1972
    else:
1973
        ckpts = recompute.checkpoints
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
    if not ckpts:
        return

    block = program.global_block()
    rc_state = RecomputeState(block, block.ops)
    rc_state.build_stats()
    checkpoints = rc_state.sort_checkpoints(ckpts)

    segments = []
    start_idx = -1
    pre_segment_end_idx = -1
    while start_idx + 1 < len(checkpoints):
        if start_idx == -1:
            ckpt_name = checkpoints[start_idx + 1]
            if ckpt_name not in rc_state.var_op_deps:
                start_idx += 1
                continue
            op_idx_list = rc_state.var_op_deps[ckpt_name]["var_as_output_ops"]
            if op_idx_list and max(op_idx_list) > 0:
                segments.append([0, max(op_idx_list) + 1])
        else:
            flag, min_idx, max_idx = rc_state.is_subgraph(
                [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
            )
            if flag:
                min_idx = rc_state._update_segment_start(
                    min_idx, pre_segment_end_idx
                )
                segments.append([min_idx, max_idx + 1])
            else:
                logging.debug(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
        start_idx += 1

    for i, segment in enumerate(segments):
        for j in range(segment[0], segment[1]):
            block.ops[j]._set_attr(
                'op_namescope', "/auto_parallel/rc_" + str(i)
            )
2017 2018


2019 2020 2021 2022 2023 2024
def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

2025
    if cur_rank not in process_mesh.process_ids:
2026 2027 2028 2029 2030
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
2031
    if batch_size_axis > -1 and process_mesh.shape[batch_size_axis] > 1:
2032
        group_ranks = _get_comm_group(
2033 2034
            process_mesh.process_ids,
            process_mesh.shape,
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
2048 2049


2050
def set_data_parallel(x):
2051
    from .interface import ProcessMesh, shard_tensor
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    from .process_group import get_world_process_group

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


2079 2080 2081 2082 2083 2084 2085 2086 2087
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
2088
    cpp_dist_attr.annotated = py_dist_attr.annotated
2089 2090 2091 2092 2093 2094


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
2095
    if cpp_process_mesh is not None:
2096 2097 2098 2099 2100
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
2101
    py_dist_attr.annotated = cpp_dist_attr.annotated
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
2114 2115
    cpp_dist_attr.is_recompute = py_dist_attr.is_recompute
    cpp_dist_attr.annotated = py_dist_attr.annotated
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
    from .process_mesh import ProcessMesh

    cpp_process_mesh = cpp_dist_attr.process_mesh
2128
    if cpp_process_mesh is not None:
2129 2130 2131 2132 2133 2134
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
2135 2136
    py_dist_attr.is_recompute = cpp_dist_attr.is_recompute
    py_dist_attr.annotated = cpp_dist_attr.annotated
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
2195 2196 2197 2198 2199 2200


def insert_dependencies_for_two_ops(
    block,
    idx,
    prior_op,
2201
    posterior_op,
2202 2203 2204
    dist_context,
    is_recompute=False,
    sync=False,
2205
    op_namescope=None,
2206 2207
):
    """
2208
    dependency: prior_op should be run before posterior_op
2209 2210 2211 2212 2213 2214 2215 2216
    """

    assert (
        len(prior_op.output_arg_names) >= 1
    ), "first op of dependency should at least have one output. [{}]".format(
        str(prior_op)
    )
    assert (
2217
        len(posterior_op.input_arg_names) >= 1
2218
    ), "second op of dependency should at least have one input. [{}]".format(
2219
        str(posterior_op)
2220 2221 2222 2223 2224
    )
    prior_op_mesh = dist_context.get_op_dist_attr_for_program(
        prior_op
    ).process_mesh
    posterior_mesh = dist_context.get_op_dist_attr_for_program(
2225
        posterior_op
2226 2227 2228 2229 2230 2231 2232 2233 2234
    ).process_mesh
    assert (
        prior_op_mesh == posterior_mesh
    ), "two ops of dependency should have same mesh but got [{}] and [{}]".format(
        str(prior_op_mesh), str(posterior_mesh)
    )

    def _select_best_depend_var(vars):

2235 2236 2237
        # parameter should not be dep var since it maybe partition in sharding pass
        vars = [var for var in vars if not var.is_parameter]
        assert len(vars) > 0
2238 2239 2240 2241 2242 2243 2244 2245 2246
        vars_with_numels = [(var, get_var_numel(var)) for var in vars]
        vars_with_numels.sort(key=lambda x: x[1])

        return vars_with_numels[-1][0]

    first_var = _select_best_depend_var(
        [block.var(name) for name in prior_op.output_arg_names]
    )
    second_var = _select_best_depend_var(
2247
        [block.var(name) for name in posterior_op.input_arg_names]
2248 2249
    )

2250
    return insert_dependencies_for_vars(
2251 2252 2253 2254 2255 2256
        block,
        idx,
        first_var,
        second_var,
        dist_context,
        OpRole.Backward,
2257 2258 2259 2260 2261
        process_mesh=prior_op_mesh,
        is_recompute=is_recompute,
        sync=sync,
        op_namescope=op_namescope,
        use_nop=False,
2262 2263 2264
    )


2265
def insert_dependencies_for_vars(
2266 2267
    block,
    idx,
2268 2269
    prior_vars,
    post_vars,
2270 2271 2272 2273 2274
    dist_context,
    oprole,
    process_mesh=None,
    is_recompute=False,
    sync=False,
2275 2276
    op_namescope=None,
    use_nop=False,
2277 2278
):
    """
2279
    dependency: op that generates prior_vars should be run before op that generates post_vars
2280
    """
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

    if isinstance(prior_vars, Variable):
        prior_vars = [prior_vars]
    if isinstance(post_vars, Variable):
        post_vars = [post_vars]
    for prior_var in prior_vars:
        assert block.has_var(prior_var.name)
    for post_var in post_vars:
        assert block.has_var(post_var.name)

2291 2292
    if process_mesh is None:
        process_mesh = dist_context.get_tensor_dist_attr_for_program(
2293
            post_vars[0]
2294 2295 2296
        ).process_mesh
    assert process_mesh is not None

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
    use_nop = True
    if use_nop:
        depend_op = block._insert_op_without_sync(
            idx,
            type='nop',
            inputs={
                "X": prior_vars,
            },
            outputs={"Out": post_vars},
        )
    else:
        depend_op = block._insert_op_without_sync(
            idx,
            type='depend',
            inputs={
                "X": post_vars,
                "Dep": prior_vars,
            },
            outputs={"Out": post_vars},
        )

2318
    # depend_op.desc.set_type("depend")
2319
    depend_op._set_attr(OP_ROLE_KEY, oprole)
2320 2321 2322 2323
    # depend_op.desc.set_input("Dep", [first_var.name])
    # self.desc.set_output(out_proto.name, out_arg_names)

    naive_set_dist_op_attr_for_program_by_mesh(
2324
        depend_op, process_mesh, dist_context, is_recompute
2325
    )
2326 2327
    if op_namescope is not None:
        depend_op._set_attr('op_namescope', "/{}".format(op_namescope))
2328 2329 2330

    if sync:
        block._sync_with_cpp()
2331 2332 2333 2334

    return depend_op


2335 2336 2337 2338 2339
def is_dep_skip_op(op):
    if "c_" in op.type:
        return True

    return False