test_detection_map_op.py 5.2 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
import unittest
import numpy as np
import sys
import collections
import math
from op_test import OpTest


class TestDetectionMAPOp(OpTest):
    def set_data(self):
        self.init_test_case()

        self.mAP = [self.calc_map(self.tf_pos)]
        self.label = np.array(self.label).astype('float32')
        self.detect = np.array(self.detect).astype('float32')
        self.mAP = np.array(self.mAP).astype('float32')

        self.inputs = {
            'Label': (self.label, self.label_lod),
            'Detect': self.detect
        }

        self.attrs = {
            'overlap_threshold': self.overlap_threshold,
            'evaluate_difficult': self.evaluate_difficult,
            'ap_type': self.ap_type
        }

        self.outputs = {'MAP': self.mAP}

    def init_test_case(self):
        self.overlap_threshold = 0.3
        self.evaluate_difficult = True
        self.ap_type = "Integral"

        self.label_lod = [[0, 2, 4]]
        # label xmin ymin xmax ymax difficult
        self.label = [[1, 0.1, 0.1, 0.3, 0.3, 0], [1, 0.6, 0.6, 0.8, 0.8, 1],
                      [2, 0.3, 0.3, 0.6, 0.5, 0], [1, 0.7, 0.1, 0.9, 0.3, 0]]

        # image_id label score xmin ymin xmax ymax difficult
        self.detect = [
            [0, 1, 0.3, 0.1, 0.0, 0.4, 0.3], [0, 1, 0.7, 0.0, 0.1, 0.2, 0.3],
            [0, 1, 0.9, 0.7, 0.6, 0.8, 0.8], [1, 2, 0.8, 0.2, 0.1, 0.4, 0.4],
            [1, 2, 0.1, 0.4, 0.3, 0.7, 0.5], [1, 1, 0.2, 0.8, 0.1, 1.0, 0.3],
            [1, 3, 0.2, 0.8, 0.1, 1.0, 0.3]
        ]

        # image_id label score false_pos false_pos
        # [-1, 1, 3, -1, -1],
        # [-1, 2, 1, -1, -1]
        self.tf_pos = [[0, 1, 0.9, 1, 0], [0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1],
                       [1, 1, 0.2, 1, 0], [1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0],
                       [1, 3, 0.2, 0, 1]]

    def calc_map(self, tf_pos):
        mAP = 0.0
        count = 0

        class_pos_count = {}
        true_pos = {}
        false_pos = {}

        def get_accumulation(pos_list):
            sorted_list = sorted(pos_list, key=lambda pos: pos[0], reverse=True)
            sum = 0
            accu_list = []
            for (score, count) in sorted_list:
                sum += count
                accu_list.append(sum)
            return accu_list

        label_count = collections.Counter()
        for (label, xmin, ymin, xmax, ymax, difficult) in self.label:
            if self.evaluate_difficult:
                label_count[label] += 1
            elif not difficult:
                label_count[label] += 1

        true_pos = collections.defaultdict(list)
        false_pos = collections.defaultdict(list)
        for (image_id, label, score, tp, fp) in tf_pos:
            true_pos[label].append([score, tp])
            false_pos[label].append([score, fp])

        for (label, label_pos_num) in label_count.items():
            if label_pos_num == 0 or label not in true_pos:
                continue

            label_true_pos = true_pos[label]
            label_false_pos = false_pos[label]

            accu_tp_sum = get_accumulation(label_true_pos)
            accu_fp_sum = get_accumulation(label_false_pos)

            precision = []
            recall = []

            for i in range(len(accu_tp_sum)):
                precision.append(
                    float(accu_tp_sum[i]) /
                    float(accu_tp_sum[i] + accu_fp_sum[i]))
                recall.append(float(accu_tp_sum[i]) / label_pos_num)

            if self.ap_type == "11point":
                max_precisions = [11.0, 0.0]
                start_idx = len(accu_tp_sum) - 1
                for j in range(10, 0, -1):
                    for i in range(start_idx, 0, -1):
                        if recall[i] < j / 10.0:
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
                            else:
                                if max_precisions[j] < accu_precision[i]:
                                    max_precisions[j] = accu_precision[i]
                for j in range(10, 0, -1):
                    mAP += max_precisions[j] / 11
                count += 1
            elif self.ap_type == "Integral":
                average_precisions = 0.0
                prev_recall = 0.0
                for i in range(len(accu_tp_sum)):
                    if math.fabs(recall[i] - prev_recall) > 1e-6:
                        average_precisions += precision[i] * \
                            math.fabs(recall[i] - prev_recall)
                        prev_recall = recall[i]

                mAP += average_precisions
                count += 1

        if count != 0: mAP /= count
        return mAP * 100.0

    def setUp(self):
        self.op_type = "detection_map"
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOpSkipDiff, self).init_test_case()

        self.evaluate_difficult = False

        self.tf_pos = [[0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1], [1, 1, 0.2, 1, 0],
                       [1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0], [1, 3, 0.2, 0, 1]]


if __name__ == '__main__':
    unittest.main()