adam_op_mlu.cc 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T>
class AdamMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
    auto* param = ctx.Input<LoDTensor>("Param");
    auto* grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Grad(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Grad").front(),
                          framework::ToTypeName(param_var->Type())));
    auto* grad = ctx.Input<LoDTensor>("Grad");
    auto* mom1 = ctx.Input<LoDTensor>("Moment1");
    auto* mom2 = ctx.Input<LoDTensor>("Moment2");
    auto* lr = ctx.Input<LoDTensor>("LearningRate");

    auto* beta1_pow = ctx.Input<Tensor>("Beta1Pow");
    auto* beta2_pow = ctx.Input<Tensor>("Beta2Pow");

    auto* param_out = ctx.Output<LoDTensor>("ParamOut");
    auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
    auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");

    bool skip_update = false;
    if (ctx.HasInput("SkipUpdate")) {
      auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
      PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(SkipUpdate) size must be 1, but get %d",
                            skip_update_tensor->numel()));
      std::vector<bool> skip_update_vec;
      paddle::framework::TensorToVector(*skip_update_tensor,
                                        ctx.device_context(), &skip_update_vec);
      skip_update = skip_update_vec[0];
    }
    // skip_update=true, just copy input to output, and TensorCopy will call
    // mutable_data
    if (skip_update) {
      VLOG(4) << "Adam skip update";
      framework::TensorCopy(
          *param, ctx.GetPlace(),
          ctx.template device_context<platform::MLUDeviceContext>(), param_out);
      framework::TensorCopy(
          *mom1, ctx.GetPlace(),
          ctx.template device_context<platform::MLUDeviceContext>(), mom1_out);
      framework::TensorCopy(
          *mom2, ctx.GetPlace(),
          ctx.template device_context<platform::MLUDeviceContext>(), mom2_out);
      framework::TensorCopy(
          *beta1_pow, beta1_pow->place(),
          ctx.template device_context<platform::MLUDeviceContext>(),
          beta1_pow_out);
      framework::TensorCopy(
          *beta2_pow, beta2_pow->place(),
          ctx.template device_context<platform::MLUDeviceContext>(),
          beta2_pow_out);
      return;
    }

    bool use_global_beta_pow = ctx.Attr<bool>("use_global_beta_pow");
    VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

    param_out->ShareDataWith(*param);
    mom1_out->ShareDataWith(*mom1);
    mom2_out->ShareDataWith(*mom2);

    LoDTensor beta1_pow_tmp;
    LoDTensor beta2_pow_tmp;
    if (beta1_pow->place() == platform::CPUPlace()) {
      T beta1 = *beta1_pow->data<T>();
      beta1_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
      MLUCnnlTensorDesc beta1_pow_tmp_desc(beta1_pow_tmp);
      MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta1,
                    beta1_pow_tmp_desc.get(), GetBasePtr(&beta1_pow_tmp));
      beta1_pow = &beta1_pow_tmp;
    }
    if (beta2_pow->place() == platform::CPUPlace()) {
      T beta2 = *beta2_pow->data<T>();
      beta2_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
      MLUCnnlTensorDesc beta2_pow_tmp_desc(beta2_pow_tmp);
      MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta2,
                    beta2_pow_tmp_desc.get(), GetBasePtr(&beta2_pow_tmp));
      beta2_pow = &beta2_pow_tmp;
    }

    VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
            << "beta2_pow.numel() : " << beta2_pow->numel();
    VLOG(3) << "param.numel(): " << param->numel();

    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta1 pow output size should be 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta2 pow output size should be 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));

    const Tensor* beta1_tensor = nullptr;
    const Tensor* beta2_tensor = nullptr;
    const Tensor* epsilon_tensor = nullptr;

    Tensor beta1_tmp(experimental::DataType::FLOAT32);
    Tensor beta2_tmp(experimental::DataType::FLOAT32);
    Tensor epsilon_tmp(experimental::DataType::FLOAT32);

    if (ctx.HasInput("Beta1Tensor")) {
      beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
      PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta1Tensor) size must be 1, but get %d",
                            beta1_tensor->numel()));
    } else {
      T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
      beta1_tmp.mutable_data<T>({1}, ctx.GetPlace());
      MLUCnnlTensorDesc beta1_tmp_desc(beta1_tmp);
      MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta1, beta1_tmp_desc.get(),
                    GetBasePtr(&beta1_tmp));
      beta1_tensor = &beta1_tmp;
    }

    if (ctx.HasInput("Beta2Tensor")) {
      beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
      PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta2Tensor) size must be 1, but get %d",
                            beta2_tensor->numel()));
    } else {
      T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
      beta2_tmp.mutable_data<T>({1}, ctx.GetPlace());
      MLUCnnlTensorDesc beta2_tmp_desc(beta2_tmp);
      MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta2, beta2_tmp_desc.get(),
                    GetBasePtr(&beta2_tmp));
      beta2_tensor = &beta2_tmp;
    }

    if (ctx.HasInput("EpsilonTensor")) {
      epsilon_tensor = ctx.Input<framework::Tensor>("EpsilonTensor");
      PADDLE_ENFORCE_EQ(epsilon_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(EpsilonTensor) size must be 1, but get %d",
                            epsilon_tensor->numel()));
    } else {
      T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
      epsilon_tmp.mutable_data<T>({1}, ctx.GetPlace());
      MLUCnnlTensorDesc epsilon_tmp_desc(epsilon_tmp);
      MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &epsilon,
                    epsilon_tmp_desc.get(), GetBasePtr(&epsilon_tmp));
      epsilon_tensor = &epsilon_tmp;
    }

    MLUCnnlTensorDesc param_desc(*param);
    MLUCnnlTensorDesc mom1_desc(*mom1);
    MLUCnnlTensorDesc mom2_desc(*mom2);
    MLUCnnlTensorDesc grad_desc(*grad);
    MLUCnnl::ApplyAdam(ctx, param_desc.get(), GetBasePtr(param_out),
                       mom1_desc.get(), GetBasePtr(mom1_out), mom2_desc.get(),
                       GetBasePtr(mom2_out), grad_desc.get(), GetBasePtr(grad),
                       GetBasePtr(lr), GetBasePtr(beta1_tensor),
                       GetBasePtr(beta2_tensor), GetBasePtr(beta1_pow),
                       GetBasePtr(beta2_pow), GetBasePtr(epsilon_tensor),
                       /*use_nesterov*/ false);

    if (!use_global_beta_pow) {
      beta1_pow_out->mutable_data<T>(ctx.GetPlace());
      beta2_pow_out->mutable_data<T>(ctx.GetPlace());

      MLUCnnlTensorDesc beta1_desc(*beta1_tensor);
      MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
                                      CNNL_NOT_PROPAGATE_NAN);

      MLUCnnl::OpTensor(ctx, mul_op_desc.get(), beta1_desc.get(),
                        GetBasePtr(beta1_pow), beta1_desc.get(),
                        GetBasePtr(beta1_tensor), beta1_desc.get(),
                        GetBasePtr(beta1_pow_out), ToCnnlDataType<T>());

      MLUCnnl::OpTensor(ctx, mul_op_desc.get(), beta1_desc.get(),
                        GetBasePtr(beta2_pow), beta1_desc.get(),
                        GetBasePtr(beta2_tensor), beta1_desc.get(),
                        GetBasePtr(beta2_pow_out), ToCnnlDataType<T>());
    }
  }
};

template <typename T>
class AdamWMLUKernel : public AdamMLUKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    VLOG(3) << "MLU AdamW Kernel";
    bool skip_update = false;
    if (ctx.HasInput("SkipUpdate")) {
      VLOG(3) << "Has SkipUpdate";
      auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
      PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(SkipUpdate) size must be 1, but get %d",
                            skip_update_tensor->numel()));
      std::vector<bool> skip_update_vec;
      paddle::framework::TensorToVector(*skip_update_tensor,
                                        ctx.device_context(), &skip_update_vec);
      skip_update = skip_update_vec[0];
    }
    bool with_decay = ctx.Attr<bool>("with_decay");
241
    VLOG(3) << "Skip update: " << skip_update << ", With decay: " << with_decay;
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    if (!skip_update && with_decay) {
      if (ctx.HasInput("MasterParam")) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Master Param is not supported on MLU"));
      } else {
        const auto* param_var = ctx.InputVar("Param");
        PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "The Var(%s)'s type should be LoDTensor, "
                              "but the received is %s",
                              ctx.InputNames("Param").front(),
                              framework::ToTypeName(param_var->Type())));
        auto* param = ctx.Input<LoDTensor>("Param");
        auto* lr = ctx.Input<LoDTensor>("LearningRate");
        float coeff = ctx.Attr<float>("coeff");

        // update param with decay coeff: mul(-1 * lr, coeff * param) + param
        MLUCnnlTensorDesc lr_desc(*lr);
        MLUCnnlTensorDesc param_desc(*param);
        MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
                                        CNNL_NOT_PROPAGATE_NAN);

        MLUCnnl::OpTensor(ctx, mul_op_desc.get(), lr_desc.get(), GetBasePtr(lr),
                          param_desc.get(), GetBasePtr(param), param_desc.get(),
                          const_cast<void*>(GetBasePtr(param)),
                          ToCnnlDataType<T>(),
                          /*alpha1*/ -1.f, /*alpha2*/ coeff, /*beta*/ 1.f);
      }
    }
    AdamMLUKernel<T>::Compute(ctx);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_MLU_KERNEL(adam, ops::AdamMLUKernel<float>,
                       ops::AdamMLUKernel<plat::float16>);

REGISTER_OP_MLU_KERNEL(adamw, ops::AdamWMLUKernel<float>,
                       ops::AdamWMLUKernel<plat::float16>);