node.py 23.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
16
from six.moves import reduce
D
dongdaxiang 已提交
17 18 19 20


class Server(object):
    """
21 22
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
23 24 25 26 27 28 29 30 31
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
32
        it's a base class, does not have implementation
D
dongdaxiang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
49 50 51 52 53 54
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
55

56
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
57 58 59
        """
        Args:
            table_id(int): id of sparse params table
60
            strategy(dict): the config dict.
D
dongdaxiang 已提交
61 62 63
        Returns:
            return None 
        """
64

65 66 67 68 69 70 71
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
72 73
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
74
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
75 76
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
77 78 79 80 81

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
82
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
83
                    'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
84 85
                    'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                    'sparse_ada_epsilon', 'sparse_optimizer']
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        support_table_calss = ['DownpourSparseTable']
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
                    "support sparse_table_class: [ 'DownpourSparseTable' ], \
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

        if table_class == 'DownpourSparseTable':
104 105 106 107 108 109
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
110 111 112
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)
113 114 115
            # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
            # DownpourCtrAccessor         : for ctr task, has cvm, slot, embedding and sgd info
            # DownpourSparseValueAccessor : for general task, has embedding and sgd info
116 117

            support_accessor_class = [
118 119
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
                'DownpourSparseValueAccessor'
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
165 166 167 168
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = converter
                table1.deconverter = deconverter

                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = converter
                table2.deconverter = deconverter
            elif accessor_class == 'DownpourSparseValueAccessor':
                optimizer_name = strategy.get("sparse_optimizer", "adam")
                table.accessor.sparse_commonsgd_param.name = optimizer_name
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.fea_dim = int(table.accessor.embedx_dim)
                if optimizer_name == "naive":
                    table.accessor.sparse_commonsgd_param.naive.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.naive.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adagrad":
                    table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
                        'sparse_initial_g2sum', 3)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adam":
                    table.accessor.sparse_commonsgd_param.adam.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.001)
                    table.accessor.sparse_commonsgd_param.adam.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
                        'sparse_beta1_decay_rate', 0.9)
                    table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
                        'sparse_beta2_decay_rate', 0.999)
                    table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
                        'sparse_ada_epsilon', 1e-8)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
232 233 234 235
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

236 237
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
238 239 240
                table1.converter = converter
                table1.deconverter = deconverter

241 242
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
243 244
                table2.converter = converter
                table2.deconverter = deconverter
245

246
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
247
                        sparse_table_names):
D
dongdaxiang 已提交
248 249 250
        """
        Args:
            table_id(int): id of sparse params table
251 252 253 254
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
255 256 257
        Returns:
            return None 
        """
258
        fea_dim = 0
259 260
        dense_param_vars = []
        for p in param_var:
261
            if p.name not in sparse_table_names:
262 263 264
                dense_param_vars.append(p)

        for param in dense_param_vars:
265 266 267 268 269 270 271 272 273 274
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
275 276 277

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
278
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
279
        table.table_id = table_id
280 281 282 283 284 285 286 287 288 289
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
290
        table.type = pslib.PS_DENSE_TABLE
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
308 309
        table.accessor.fea_dim = fea_dim

310
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
311
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
312 313
        """
        Args:
314
            table_id(int): id of datanorm table
315 316 317 318 319
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
320 321 322
        Returns:
            return None 
        """
323
        fea_dim = 0
324 325
        dense_param_vars = []
        for p in param_var:
326
            if p.name not in sparse_table_names:
327 328 329
                dense_param_vars.append(p)

        for param in dense_param_vars:
330 331 332 333 334 335 336 337 338 339
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
340 341 342 343 344 345 346 347 348 349
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
350
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
351
        table.table_id = table_id
352
        table.table_class = strategy.get('datanorm_table_class',
353
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
354
        table.type = pslib.PS_DENSE_TABLE
355 356
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
357
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
358
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
359
                                                           'summary')
360 361
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
362 363 364 365 366 367
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
368
        return self._server
D
dongdaxiang 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
383
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
384

385 386 387 388 389
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
390 391 392
        """
        Args:
            table_id(int): id of sparse params table
393 394 395 396
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
397 398 399
        Returns:
            return None 
        """
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
420 421
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
422
                keys = table.slot_key
423 424 425 426
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
427
                                         table_id)
428 429
                target_table = table
                break
430

431 432 433
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
434
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
435
        table.table_id = table_id
436 437 438
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
439

440
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
441
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
442 443 444 445 446
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
447 448 449 450
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
451 452 453
        Returns:
            return None 
        """
454
        sparse_table_name_grad = []
455
        for name in sparse_table_names:
456 457 458 459
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
460
            if p.name not in sparse_table_names:
461 462 463 464 465 466 467 468 469
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
470

471 472
        for table in self._worker.dense_table:
            if table.table_id == table_id:
473
                desc_dense_param_name = list(table.dense_variable_name)
474 475 476
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
477 478
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
479 480
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
481 482 483
                        return
                    else:
                        raise ValueError(
484 485
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
486 487 488 489
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
490
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
491
        table.table_id = table_id
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
519 520 521 522 523

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
524
        return self._worker