flatten_op.cc 19.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#include "paddle/fluid/operators/flatten_op.h"
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
19 20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

27
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
28
 public:
29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
34 35
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
36
    PADDLE_ENFORCE_GE(axis, 0,
37 38
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
39 40
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
41 42
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    const auto &out_dims = GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
58 59 60 61 62
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
63
      } else {
D
danleifeng 已提交
64 65 66 67 68
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
69 70 71 72 73 74 75 76
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

77 78 79
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
80 81 82
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
104 105
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
106 107
        .SetDefault(false)
        .AsExtra();
108 109 110 111
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
112 113
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
B
Bai Yifan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

139
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
140
 public:
141 142 143
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
144 145 146 147 148
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

149 150 151
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
152 153 154
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
155 156 157 158 159 160 161 162
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

163
  void Apply(GradOpPtr<T> grad_op) const override {
164 165 166 167 168
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
169 170 171
  }
};

172 173 174 175 176
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
177
class Flatten2Op : public framework::OperatorWithKernel {
178
 public:
179 180 181
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
182 183
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
184
    const auto &axis = ctx->Attrs().Get<int>("axis");
185
    const auto &in_dims = ctx->GetInputDim("X");
186
    PADDLE_ENFORCE_GE(axis, 0,
187 188
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
189 190
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
191 192
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
193 194 195 196 197 198 199 200

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
201 202
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
203 204 205 206 207 208 209 210
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }
211 212 213 214 215 216 217

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
218 219 220 221 222 223 224 225 226
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
227 228
        .AsIntermediate()
        .AsExtra();
229 230 231
  }
};

H
hong 已提交
232 233
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
234
 public:
H
hong 已提交
235
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
236

237
  void Apply(GradOpPtr<T> grad_op) const override {
238
    grad_op->SetType("flatten2_grad");
H
hong 已提交
239 240 241 242
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
243 244 245
  }
};

246
class Flatten2GradOp : public framework::OperatorWithKernel {
247
 public:
248 249 250
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
251 252 253 254
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Flatten2Grad");
255 256 257 258 259 260
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

261 262 263
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
264 265 266
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
267 268 269
  }
};

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FlattenContiguousRange");
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");
    const auto &in_dims = ctx->GetInputDim("X");
    int in_dims_size = in_dims.size();
    int real_start_axis = start_axis, real_stop_axis = stop_axis;
    if (start_axis < 0) {
      real_start_axis = start_axis + in_dims_size;
    }
    if (stop_axis < 0) {
      real_stop_axis = stop_axis + in_dims_size;
    }
    PADDLE_ENFORCE_GE(
        real_stop_axis, real_start_axis,
        platform::errors::InvalidArgument("The stop_axis should be greater"
                                          "than or equal to start_axis."));

    const auto &out_dims =
        GetOutputShape(real_start_axis, real_stop_axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
302 303
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }

  static std::vector<int32_t> GetOutputShape(const int start_axis,
                                             const int stop_axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1;
    std::vector<int32_t> out_shape;
    int in_dims_size = in_dims.size();
    out_shape.reserve(in_dims_size - stop_axis + start_axis);

    for (int i = 0; i < start_axis; ++i) {
      out_shape.push_back(in_dims[i]);
    }
    for (int i = start_axis; i <= stop_axis; i++) {
D
danleifeng 已提交
325 326 327 328 329
      if (in_dims[i] == -1 || outer == -1) {
        outer = -1;
      } else {
        outer *= in_dims[i];
      }
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    }
    out_shape.push_back(outer);
    for (int i = stop_axis + 1; i < in_dims_size; i++) {
      out_shape.push_back(in_dims[i]);
    }

    return out_shape;
  }
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
382 383
        .AsIntermediate()
        .AsExtra();
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "FlattenContiguousRangeGrad");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
425 426
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
427 428
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
429
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
430

B
Bai Yifan 已提交
431 432 433 434
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
435 436 437
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
438
                  ops::FlattenOpInplaceInferer);
439
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp,
440 441
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
442 443

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
H
hong 已提交
444 445
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
446
                  ops::FlattenOpInplaceInferer);
447
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
448
                  ops::FlattenGradInplaceInferer);
449

450 451 452 453 454 455 456 457 458 459
REGISTER_OPERATOR(
    flatten_contiguous_range, ops::FlattenContiguousRangeOp,
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

460 461 462
REGISTER_OP_CPU_KERNEL(
    flatten, ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
463
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, uint8_t>,
464 465 466 467 468 469 470
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
471
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
472 473 474 475 476 477
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2, ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
478
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
479 480 481 482 483 484 485
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
486
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
487 488 489
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);
490 491 492 493 494 495
REGISTER_OP_CPU_KERNEL(
    flatten_contiguous_range,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      double>,
496 497
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      uint8_t>,
498 499 500 501 502 503 504 505 506 507 508
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      int8_t>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_contiguous_range_grad,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          float>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          double>,
509 510
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          uint8_t>,
511 512 513 514 515 516
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int8_t>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int64_t>);