parallel_dygraph_se_resnext.py 10.7 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import contextlib
import unittest
import numpy as np
import six
import pickle
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
J
Jiabin Yang 已提交
30
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC, LayerNorm
Y
Yan Xu 已提交
31 32
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
33
import math
Y
Yan Xu 已提交
34 35
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase

36
batch_size = 64
J
Jiabin Yang 已提交
37 38 39
momentum_rate = 0.9
l2_decay = 1.2e-4

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "cosine_decay",
        "batch_size": batch_size,
        "epochs": [40, 80, 100],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    },
    "batch_size": batch_size,
    "lr": 0.0125,
    "total_images": 6149,
    "num_epochs": 200
}

J
Jiabin Yang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

def optimizer_setting(params):
    ls = params["learning_strategy"]
    if "total_images" not in params:
        total_images = 6149
    else:
        total_images = params["total_images"]

    batch_size = ls["batch_size"]
    step = int(math.ceil(float(total_images) / batch_size))
    bd = [step * e for e in ls["epochs"]]
    lr = params["lr"]
    num_epochs = params["num_epochs"]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.cosine_decay(
            learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
        momentum=momentum_rate,
        regularization=fluid.regularizer.L2Decay(l2_decay))

    return optimizer

Y
Yan Xu 已提交
77 78 79 80 81 82 83 84 85 86 87 88

class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
J
Jiabin Yang 已提交
89
            "conv2d",
Y
Yan Xu 已提交
90 91 92 93 94 95
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
J
Jiabin Yang 已提交
96 97
            bias_attr=False,
            param_attr=fluid.ParamAttr(name="weights"))
Y
Yan Xu 已提交
98

J
Jiabin Yang 已提交
99
        self._layer_norm = LayerNorm(self.full_name(), begin_norm_axis=1)
Y
Yan Xu 已提交
100 101 102

    def forward(self, inputs):
        y = self._conv(inputs)
103
        y = self._layer_norm(y)
Y
Yan Xu 已提交
104 105 106 107 108 109 110 111 112 113

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
    def __init__(self, name_scope, num_channels, reduction_ratio):

        super(SqueezeExcitation, self).__init__(name_scope)
        self._pool = Pool2D(
            self.full_name(), pool_size=0, pool_type='avg', global_pooling=True)
J
Jiabin Yang 已提交
114
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
Y
Yan Xu 已提交
115 116 117 118
        self._squeeze = FC(
            self.full_name(),
            size=num_channels // reduction_ratio,
            param_attr=fluid.ParamAttr(
J
Jiabin Yang 已提交
119
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
Y
Yan Xu 已提交
120
            act='relu')
J
Jiabin Yang 已提交
121
        stdv = 1.0 / math.sqrt(num_channels / 16.0 * 1.0)
Y
Yan Xu 已提交
122 123 124 125
        self._excitation = FC(
            self.full_name(),
            size=num_channels,
            param_attr=fluid.ParamAttr(
J
Jiabin Yang 已提交
126
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
Y
Yan Xu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            act='sigmoid')

    def forward(self, input):
        y = self._pool(input)
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
        super(BottleneckBlock, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
J
Jiabin Yang 已提交
151 152
            filter_size=1,
            act="relu")
Y
Yan Xu 已提交
153 154 155 156 157
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
J
Jiabin Yang 已提交
158 159
            groups=cardinality,
            act="relu")
Y
Yan Xu 已提交
160 161
        self.conv2 = ConvBNLayer(
            self.full_name(),
J
Jiabin Yang 已提交
162
            num_filters=num_filters * 2,
Y
Yan Xu 已提交
163
            filter_size=1,
J
Jiabin Yang 已提交
164
            act=None)
Y
Yan Xu 已提交
165 166 167

        self.scale = SqueezeExcitation(
            self.full_name(),
J
Jiabin Yang 已提交
168
            num_channels=num_filters * 2,
Y
Yan Xu 已提交
169 170 171 172 173
            reduction_ratio=reduction_ratio)

        if not shortcut:
            self.short = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
174
                num_filters=num_filters * 2,
Y
Yan Xu 已提交
175 176 177 178 179
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

J
Jiabin Yang 已提交
180
        self._num_channels_out = num_filters * 2
Y
Yan Xu 已提交
181 182 183 184 185 186 187 188 189 190 191 192

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

J
Jiabin Yang 已提交
193
        y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
Y
Yan Xu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        return y


class SeResNeXt(fluid.dygraph.Layer):
    def __init__(self, name_scope, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__(name_scope)

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
230
                num_filters=64,
Y
Yan Xu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
247 248
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
249 250 251 252
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
253 254 255
                num_filters=64,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
256 257 258
                act='relu')
            self.conv2 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
259 260 261
                num_filters=128,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        self.full_name(),
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(2048 * 1.0)

J
Jiabin Yang 已提交
293 294 295 296
        self.out = FC(self.full_name(),
                      size=class_dim,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))
Y
Yan Xu 已提交
297

J
Jiabin Yang 已提交
298
    def forward(self, inputs):
Y
Yan Xu 已提交
299 300 301 302 303 304 305 306 307 308 309 310
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
            y = self.conv1(inputs)
            y = self.conv2(inputs)
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
J
Jiabin Yang 已提交
311 312
        y = self.out(y)
        return y
Y
Yan Xu 已提交
313 314 315 316 317 318 319


class TestSeResNeXt(TestParallelDyGraphRunnerBase):
    def get_model(self):
        model = SeResNeXt("se-resnext")
        train_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False),
320
            batch_size=train_parameters["batch_size"],
Y
Yan Xu 已提交
321
            drop_last=True)
322 323
        optimizer = optimizer_setting(train_parameters)
        return model, train_reader, optimizer
Y
Yan Xu 已提交
324 325 326 327 328 329 330 331 332 333

    def run_one_loop(self, model, opt, data):
        bs = len(data)
        dy_x_data = np.array([x[0].reshape(3, 224, 224)
                              for x in data]).astype('float32')
        y_data = np.array([x[1] for x in data]).astype('int64').reshape(bs, 1)
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

J
Jiabin Yang 已提交
334 335 336 337 338
        out = model(img)
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)
        loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_loss = fluid.layers.mean(x=loss)
        return avg_loss
Y
Yan Xu 已提交
339 340 341 342


if __name__ == "__main__":
    runtime_main(TestSeResNeXt)