sum_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14 15
#include <algorithm>
#include <string>
16
#include <vector>
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
34
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
35

Q
Qiao Longfei 已提交
36 37
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
38 39
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
40
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      return;  // skip runtime infershape when is tensor array;
    }
43

44
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
45
    size_t N = x_dims.size();
46 47 48 49
    PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0.");
    if (N == 1) {
      VLOG(3) << "Warning: sum have only one input, may waste memory";
    }
Q
qiaolongfei 已提交
50

51 52 53 54 55 56 57 58 59 60
    framework::DDim in_dim({0});
    for (auto& x_dim : x_dims) {
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
61
    }
Q
Qiao Longfei 已提交
62 63
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
64
  }
65 66

 protected:
67
  framework::OpKernelType GetExpectedKernelType(
68 69
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
70 71 72 73 74 75 76 77 78 79 80 81

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

82
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
83
      int dtype = -1;
C
chengduozh 已提交
84
      for (auto& x_var : x_vars) {
C
chengduozh 已提交
85
        // FIXME(zcd): The input x_var may be SelectedRows or LoDTensor.
C
chengduozh 已提交
86
        auto tensor = framework::GetTensorFromVar(x_var);
C
chengduozh 已提交
87
        if (tensor->numel() == 0) {
88 89 90
          continue;
        }
        if (dtype == -1) {
C
chengduozh 已提交
91
          dtype = framework::ToDataType(tensor->type());
92
        } else {
C
chengduozh 已提交
93
          PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(tensor->type()));
94 95 96 97 98
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

99
      return framework::OpKernelType(
100 101
          static_cast<framework::proto::VarType::Type>(dtype), ctx.GetPlace(),
          layout, library);
102
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
103 104 105 106
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
          return framework::OpKernelType(framework::ToDataType(value.type()),
107
                                         ctx.device_context(), layout, library);
108 109 110 111
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
112
                                     ctx.device_context(), layout, library);
113
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
114 115 116 117 118
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
            return framework::OpKernelType(framework::ToDataType(each.type()),
119 120
                                           ctx.device_context(), layout,
                                           library);
Y
Yang Yang(Tony) 已提交
121
          }
122 123
        }
      }
Y
Yang Yang(Tony) 已提交
124
      PADDLE_THROW("Cannot find the input data type by all input data");
125 126 127 128
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
129 130 131 132
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
133
  void Make() override {
134 135
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
136
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
137 138 139
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
140
    AddComment(R"DOC(
141
Sum operator.
142

143 144
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
145
the LoD information with the first input.
146
)DOC");
147 148 149
  }
};

Q
QI JUN 已提交
150 151
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
152 153
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
QI JUN 已提交
154
    auto& inputs = op_desc.Input("X");
155
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
Y
Yang Yang(Tony) 已提交
156 157
    for (auto& name : op_desc.Input("X")) {
      VLOG(10) << name << " "
Y
Yang Yu 已提交
158
               << block->FindRecursiveOrCreateVar(name).GetType();
Y
Yang Yang(Tony) 已提交
159 160
    }

Q
QI JUN 已提交
161 162
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yu 已提交
163
          return block->FindRecursiveOrCreateVar(name).GetType() ==
164
                 framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
165
        });
166 167

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yu 已提交
168
      return block->FindRecursiveOrCreateVar(name).GetType() ==
169
             framework::proto::VarType::LOD_TENSOR_ARRAY;
170 171 172 173 174 175 176 177
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
178 179 180 181
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
Y
Yang Yu 已提交
182
             << block->FindRecursiveOrCreateVar(each).GetType() << "\n";
Y
Yang Yang(Tony) 已提交
183 184 185 186
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
187
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
188
    } else if (any_input_is_lod_tensor) {
189
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
190 191 192
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yu 已提交
193
    auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
Y
Yang Yang(Tony) 已提交
194 195 196
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
197 198 199
  }
};

200
class SumGradMaker : public framework::GradOpDescMakerBase {
201
 public:
202
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
203

Y
Yu Yang 已提交
204
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
205
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
206
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
207 208 209 210
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
211
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
212 213 214 215
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
216
                     return std::unique_ptr<framework::OpDesc>(grad_op);
217 218
                   });
    return grad_ops;
219 220 221 222 223 224 225
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
226

Q
QI JUN 已提交
227 228
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
229

Q
QI JUN 已提交
230 231 232 233 234
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);