conv_mkldnn_op.cc 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

31
template <typename T>
32
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
33 34 35 36 37
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

K
Krzysztof Binias 已提交
38 39
    const bool is_test = ctx.Attr<bool>("is_test");

40 41
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
42 43 44 45
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
46
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
47 48
    auto* output = ctx.Output<Tensor>("Output");

49 50 51 52 53 54
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
55 56 57 58
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
59 60 61 62 63 64 65
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
66 67 68 69

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
70
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
71
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
72 73
    int groups = ctx.Attr<int>("groups");

74
    bool is_conv3d = strides.size() == 3U;
75
    // TODO(tpatejko): add support for dilation
76
    PADDLE_ENFORCE(
77 78 79 80
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
81 82 83 84 85 86 87 88
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
89 90
    int g = std::max(groups, 1);
    if (g > 1) {
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
      if (is_conv3d) {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int d = weights_tz[2];
        int h = weights_tz[3];
        int w = weights_tz[4];
        weights_tz.resize(6);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = d;
        weights_tz[4] = h;
        weights_tz[5] = w;
      } else {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int h = weights_tz[2];
        int w = weights_tz[3];
        weights_tz.resize(5);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = h;
        weights_tz[4] = w;
      }
116
    }
117 118
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

119
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
120
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
121 122 123 124 125 126
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

127 128 129 130 131 132 133 134 135
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw;

    if (is_conv3d) {
      weights_format =
          (g == 1) ? filter->format() : mkldnn::memory::format::goidhw;
    }

136
    auto user_src_md = platform::MKLDNNMemDesc(
137
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
138
    auto user_weights_md = platform::MKLDNNMemDesc(
139
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
140 141 142 143 144

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
145 146 147 148
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

149 150 151 152 153 154 155 156 157 158
    weights_format =
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw;

    if (is_conv3d) {
      chosen_memory_format =
          platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      weights_format =
          (g == 1) ? chosen_memory_format : mkldnn::memory::format::goidhw;
    }

159
    auto src_md = platform::MKLDNNMemDesc(
160
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
161
    auto weights_md = platform::MKLDNNMemDesc(
162
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
163 164
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
165
    auto dst_md = platform::MKLDNNMemDesc(
166
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
167 168

    // create a conv primitive descriptor and save it for usage in backward
169
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
170 171
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
172 173 174 175
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
176 177 178
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fuse_residual_conn, fwd_prop_kind);
179
    } else {
180 181 182
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
                                     paddings, mkldnn_engine, fuse_relu,
                                     fuse_residual_conn, fwd_prop_kind);
183
    }
184
    // Save conv_pd/src_memory/weights_memory for backward pass
185
    if (!is_test) dev_ctx.SetBlob(key_conv_pd, conv_pd);
186

J
Jacek Czaja 已提交
187
    platform::ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
188

189 190 191 192 193 194
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

195 196 197 198 199
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
200 201

    std::shared_ptr<mkldnn::memory> dst_memory_p;
202

203
    if (fuse_residual_conn) {
204 205
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
206

207 208 209 210 211 212
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
213

214
      if (residual_param->format() != handler.GetDstFormat()) {
Y
Yu Yang 已提交
215 216 217
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
            handler.GetDstMemorySize());
218 219 220 221 222 223 224 225 226
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
227 228 229

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
230 231
      } else {
        output->ShareDataWith(*residual_param);
232 233 234
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
235
      }
236
    } else {
237 238 239
      auto output_data = output->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault,
          handler.GetDstMemorySize());
240 241
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
242
    }
243 244

    // create convolution op primitive
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
261 262

    // push primitive to stream and wait until it's executed
263
    pipeline.push_back(*conv_p);
264 265 266
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
267
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
268
  }
269

270
 private:
271
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
272
                                       bool fuse_residual_conn) const {
M
Michal Gallus 已提交
273 274
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
275
    // Fusion with Elementwise layer relies on adding a sum post-operation with
276 277 278 279 280
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
281 282 283 284 285 286 287 288 289 290 291
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
M
Michal Gallus 已提交
292 293 294 295
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

296 297 298 299
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
300
                       const mkldnn::engine& engine, const bool fuse_relu,
301 302
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
303 304
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
305

306
    auto conv_desc = mkldnn::convolution_forward::desc(
307 308
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
309

310 311
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
312 313 314

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
315

316 317
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
318
  }
319 320 321 322 323 324

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
325
                       const mkldnn::engine& engine, const bool fuse_relu,
326 327
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
328 329
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
330 331

    auto conv_desc = mkldnn::convolution_forward::desc(
332 333
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
334

335 336
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
337 338 339

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
340 341 342 343

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
344 345 346
};

template <typename T>
347
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
348 349 350 351 352
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

353 354
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
355 356 357 358 359 360 361 362 363 364
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

365 366 367 368 369 370 371 372 373 374 375 376 377
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

378 379 380 381
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

382 383 384 385
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
386 387
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
388

389
    bool is_conv3d = strides.size() == 3U;
390 391 392 393 394 395 396 397 398
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    int g = std::max(groups, 1);
    if (g > 1) {
      if (is_conv3d) {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int d = weights_tz[2];
        int h = weights_tz[3];
        int w = weights_tz[4];
        weights_tz.resize(6);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = d;
        weights_tz[4] = h;
        weights_tz[5] = w;
      } else {
        int o = weights_tz[0];
        int i = weights_tz[1];
        int h = weights_tz[2];
        int w = weights_tz[3];
        weights_tz.resize(5);
        weights_tz[0] = g;
        weights_tz[1] = o / g;
        weights_tz[2] = i;
        weights_tz[3] = h;
        weights_tz[4] = w;
      }
    }
427 428
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

429 430 431 432 433 434 435 436 437
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw;

    if (is_conv3d) {
      weights_format =
          (g == 1) ? filter->format() : mkldnn::memory::format::goidhw;
    }

438
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
439
    // as well as attributes of primitive to be created
440
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
441 442 443
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Input("Output"));
444 445

    const std::string key_conv_pd = key + "@conv_pd";
446
    std::vector<primitive> pipeline;
447

448 449
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
450
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
451
    auto user_weights_md = platform::MKLDNNMemDesc(
452
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
453 454
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
455 456 457 458 459

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
460 461 462 463
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

464 465 466 467 468 469 470 471 472 473
    weights_format =
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw;

    if (is_conv3d) {
      chosen_memory_format =
          platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      weights_format =
          (g == 1) ? chosen_memory_format : mkldnn::memory::format::goidhw;
    }

474
    auto src_md = platform::MKLDNNMemDesc(
475
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
476
    auto diff_src_md = platform::MKLDNNMemDesc(
477
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
478
    auto weights_md = platform::MKLDNNMemDesc(
479
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
480
    auto diff_weights_md = platform::MKLDNNMemDesc(
481
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
482
    auto diff_dst_md = platform::MKLDNNMemDesc(
483
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
484

485
    // Retrieve conv_pd from device context
486 487 488
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
489 490 491
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
508 509 510
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
511 512 513 514 515 516 517 518 519

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

520 521
    // create backward conv primitive for weights
    if (filter_grad) {
522 523
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
524

525 526 527 528
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

529
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
530 531
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
532

533 534 535 536 537 538 539 540 541
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
542 543

      filter_grad->set_layout(DataLayout::kMKLDNN);
544
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
545 546 547
    }

    if (input_grad) {
548 549 550 551 552 553 554
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

555
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
556 557
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
558

559 560 561 562 563 564 565
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
566 567

      input_grad->set_layout(DataLayout::kMKLDNN);
568
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
569
    }
570
    stream(stream::kind::eager).submit(pipeline).wait();
571 572 573 574 575 576 577 578
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
579 580 581 582 583 584 585 586 587
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
588 589 590 591 592 593 594 595 596 597

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);