test_dynamic_engine.cc 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
21
#include "paddle/phi/common/data_type.h"
22 23 24
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
#include "paddle/fluid/inference/tensorrt/plugin/spmm_plugin.h"
#endif
25
#include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h"
26 27 28 29 30 31 32 33
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/common/float16.h"

using float16 = phi::dtype::float16;
namespace paddle {
namespace inference {
namespace tensorrt {

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class TensorRTDynamicShapeValueEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
    ctx_ = new phi::GPUContext(platform::CUDAPlace(0));
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
    ctx_->PartialInitWithAllocator();

    std::map<std::string, std::vector<int>> min_input_shape = {
        {"input", {1, 32}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
        {"input", {18, 32}}};
    std::map<std::string, std::vector<int>> optim_input_shape = {
        {"input", {18, 32}}};
    std::map<std::string, std::vector<int>> min_input_value = {
        {"shape", {1, 8, 4}}};
    std::map<std::string, std::vector<int>> max_input_value = {
        {"shape", {18, 8, 4}}};
    std::map<std::string, std::vector<int>> optim_input_value = {
        {"shape", {18, 8, 4}}};
    engine_ = new TensorRTEngine(16,
                                 1 << 10,
                                 AnalysisConfig::Precision::kFloat32,
                                 nullptr,
                                 0,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 min_input_value,
                                 max_input_value,
                                 optim_input_value,
                                 false,
                                 phi::DataType::FLOAT32,
                                 NaiveLogger::Global());
    engine_->InitNetwork();
  }

  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
    paddle::framework::TensorFromVector(input, *ctx_, &input_);
    output_.Resize(phi::make_ddim(output_shape));
  }
  void PrepareShapeInput(const std::vector<int> &input) {
    paddle::framework::TensorFromVector(input, *ctx_, &shape_);
  }
  void GetOutput(std::vector<float> *output) {
    paddle::framework::TensorToVector(output_, *ctx_, output);
  }

 protected:
104 105 106
  phi::DenseTensor input_;
  phi::DenseTensor shape_;
  phi::DenseTensor output_;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  TensorRTEngine *engine_;
  phi::GPUContext *ctx_;
};

TEST_F(TensorRTDynamicShapeValueEngineTest, test_trt_dynamic_shape_value) {
  std::vector<void *> buffers(3);
  std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape()
            << std::endl;
  auto *x = engine_->DeclareInput(
      "input", nvinfer1::DataType::kFLOAT, nvinfer1::Dims2{-1, 32});
  nvinfer1::Dims shape_dim;
  shape_dim.nbDims = 1;
  shape_dim.d[0] = 3;
  auto *shape =
      engine_->DeclareInput("shape", nvinfer1::DataType::kINT32, shape_dim);
  auto layer = engine_->network()->addShuffle(*x);
  layer->setInput(1, *shape);
  PADDLE_ENFORCE_NOT_NULL(
      layer,
      platform::errors::InvalidArgument("TRT shuffle layer building failed."));
  engine_->DeclareOutput(layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 3);

  std::vector<float> x_v(8 * 32);
  for (int i = 0; i < 8 * 32; i++) {
    x_v[i] = i % (8 * 32);
  }

  std::vector<int> shape_v = {8, 8, 4};
  PrepareInputOutput(x_v, {8, 8, 4});
  PrepareShapeInput(shape_v);
  engine_->context()->setBindingDimensions(0, nvinfer1::Dims2{8, 32});
  engine_->context()->setBindingDimensions(1, shape_dim);
  engine_->context()->setInputShapeBinding(1, shape_v.data());

  auto *x_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *shape_gpu_data = shape_.mutable_data<int>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_gpu_data);
  buffers[1] = reinterpret_cast<void *>(shape_gpu_data);
  buffers[2] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(-1, &buffers, ctx_->stream());
  cudaStreamSynchronize(ctx_->stream());
  std::vector<float> y_cpu;
  GetOutput(&y_cpu);
  ASSERT_EQ(y_cpu[0], 0);
  ASSERT_EQ(y_cpu[1], 1);
  auto dims = engine_->context()->getBindingDimensions(2);
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 8);
  ASSERT_EQ(dims.d[1], 8);
  ASSERT_EQ(dims.d[2], 4);
  return;
}

165 166 167
class TensorRTDynamicEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
L
Leo Chen 已提交
168
    ctx_ = new phi::GPUContext(platform::CUDAPlace(0));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
    ctx_->PartialInitWithAllocator();

    std::map<std::string, std::vector<int>> min_input_shape = {
        {"input", {16, 32, 1, 1}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
        {"input", {16, 32, 1, 1}}};
    std::map<std::string, std::vector<int>> optim_input_shape = {
        {"input", {16, 32, 1, 1}}};

193 194 195 196 197 198 199 200
    engine_ = new TensorRTEngine(16,
                                 1 << 10,
                                 AnalysisConfig::Precision::kHalf,
                                 nullptr,
                                 0,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
201 202 203
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
204
                                 false,
205
                                 phi::DataType::FLOAT32,
206
                                 NaiveLogger::Global());
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    engine_->InitNetwork();
  }

  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }

  void PrepareInputOutput(const std::vector<float16> &input,
                          std::vector<int> output_shape) {
    paddle::framework::TensorFromVector(input, *ctx_, &input_);
    output_.Resize(phi::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    paddle::framework::TensorToVector(output_, *ctx_, output);
  }

 protected:
228 229
  phi::DenseTensor input_;
  phi::DenseTensor output_;
230
  TensorRTEngine *engine_;
L
Leo Chen 已提交
231
  phi::GPUContext *ctx_;
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
};

TEST_F(TensorRTDynamicEngineTest, test_spmm) {
  // Weight in CPU memory.
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
  float16 raw_weight[512];
  for (int i = 0; i < 128; i++) {
    if (i % 16 <= 7) {
      raw_weight[4 * i] = float16(1.0);
      raw_weight[4 * i + 1] = float16(0.0);
      raw_weight[4 * i + 2] = float16(0.0);
      raw_weight[4 * i + 3] = float16(4.0);
    } else {
      raw_weight[4 * i] = float16(0.0);
      raw_weight[4 * i + 1] = float16(2.0);
      raw_weight[4 * i + 2] = float16(3.0);
      raw_weight[4 * i + 3] = float16(0.0);
    }
  }
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  float16 raw_bias[16] = {float16(0),
                          float16(1),
                          float16(0),
                          float16(2),
                          float16(0),
                          float16(3),
                          float16(0),
                          float16(4),
                          float16(0),
                          float16(5),
                          float16(0),
                          float16(6),
                          float16(0),
                          float16(7),
                          float16(0),
                          float16(8)};
267 268 269 270 271
  std::vector<void *> buffers(2);  // TRT binded inputs
  TensorRTEngine::Weight weight(nvinfer1::DataType::kHALF, raw_weight, 512);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kHALF, raw_bias, 16);
  std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape()
            << std::endl;
272 273
  auto *x = engine_->DeclareInput(
      "input", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 32, 1, 1});
274 275 276 277

  plugin::SpmmPluginDynamic::Activation act =
      plugin::SpmmPluginDynamic::Activation::kNone;

278 279 280 281 282 283 284
  plugin::SpmmPluginDynamic *plugin =
      new plugin::SpmmPluginDynamic("CustomSpmmPluginDynamic",
                                    nvinfer1::DataType::kHALF,
                                    16,
                                    weight.get(),
                                    bias.get(),
                                    act);
285 286 287 288 289 290
  std::vector<nvinfer1::ITensor *> plugin_inputs;
  plugin_inputs.emplace_back(x);
  auto fc_layer = engine_->network()->addPluginV2(
      plugin_inputs.data(), plugin_inputs.size(), *plugin);

  LOG(INFO) << "create weights";
291 292 293
  PADDLE_ENFORCE_NOT_NULL(
      fc_layer,
      platform::errors::InvalidArgument("TRT SPMM layer building failed."));
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  std::vector<float16> x_v(512);
  for (int i = 0; i < 128; i++) {
    x_v[4 * i] = float16(1.0);
    x_v[4 * i + 1] = float16(2.0);
    x_v[4 * i + 2] = float16(3.0);
    x_v[4 * i + 3] = float16(4.0);
  }

  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {16, 16});

  auto *x_v_gpu_data = input_.mutable_data<float16>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(16, &buffers, ctx_->stream());
  LOG(INFO) << "to get output";
  GetOutput(&y_cpu);

  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 4);
  ASSERT_EQ(dims.d[1], 16);
  ASSERT_EQ(y_cpu[0], 136);

  ASSERT_EQ(y_cpu[1], 105);
  ASSERT_EQ(y_cpu[32], 136);
  ASSERT_EQ(y_cpu[64], 136);
  ASSERT_EQ(y_cpu[96], 136);
#endif
  return;
}

333 334 335
class TensorRTDynamicTestFusedTokenPrune : public ::testing::Test {
 protected:
  void SetUp() override {
L
Leo Chen 已提交
336
    ctx_ = new phi::GPUContext(platform::CUDAPlace(0));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
    ctx_->PartialInitWithAllocator();

    std::map<std::string, std::vector<int>> min_input_shape = {
355
        {"attn", {4, 4}},
356 357 358 359
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
360
        {"attn", {4, 4}},
361 362 363 364
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};
    std::map<std::string, std::vector<int>> optim_input_shape = {
365
        {"attn", {4, 4}},
366 367 368 369 370 371
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};

    engine_ = new TensorRTEngine(16,
                                 1 << 10,
372
                                 AnalysisConfig::Precision::kFloat32,
373 374 375 376 377
                                 nullptr,
                                 0,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
378 379 380
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
381 382 383 384 385 386 387 388 389 390 391 392 393
                                 false,
                                 phi::DataType::FLOAT32,
                                 NaiveLogger::Global());
    engine_->InitNetwork();
  }

  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }

394
  void PrepareInputOutput(const std::vector<std::vector<float>> inputs,
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                          std::vector<std::vector<int>> output_shapes) {
    LOG(INFO) << "PrepareInputOutput";
    int num_inputs = inputs.size();
    int num_outputs = output_shapes.size();
    inputs_.resize(num_inputs);
    outputs_.resize(num_outputs);
    for (int i = 0; i < num_inputs; ++i) {
      paddle::framework::TensorFromVector(inputs[i], *ctx_, &inputs_[i]);
    }
    for (int i = 0; i < num_outputs; ++i) {
      outputs_[i].Resize(phi::make_ddim(output_shapes[i]));
    }
  }

  void GetOutput(std::vector<float> &slimmed_x,     // NOLINT
                 std::vector<int32_t> &cls_inds) {  // NOLINT
    paddle::framework::TensorToVector(outputs_[0], *ctx_, &slimmed_x);
    paddle::framework::TensorToVector(outputs_[1], *ctx_, &cls_inds);
  }

 protected:
416 417
  std::vector<phi::DenseTensor> inputs_;
  std::vector<phi::DenseTensor> outputs_;
418
  TensorRTEngine *engine_;
L
Leo Chen 已提交
419
  phi::GPUContext *ctx_;
420 421 422 423
};

TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) {
#if IS_TRT_VERSION_GE(8000)
424
  tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt();
425
  auto *attn = engine_->DeclareInput(
426
      "attn", nvinfer1::DataType::kFLOAT, nvinfer1::Dims2{-1, 4});
427
  auto *x = engine_->DeclareInput(
428
      "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{-1, 4, 1});
429
  auto *mask = engine_->DeclareInput(
430
      "mask", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{-1, 1, 4, 4});
431
  auto *new_mask = engine_->DeclareInput(
432
      "new_mask", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{-1, 1, 2, 2});
433
  plugin::FusedTokenPrunePluginDynamic *plugin =
434
      new plugin::FusedTokenPrunePluginDynamic(/*with_fp16*/ false,
435 436 437
                                               /*keep_first_token*/ false,
                                               /*keep_order*/ true,
                                               /*flag_varseqlen*/ false);
438 439 440 441 442 443 444 445 446 447 448 449 450 451
  std::vector<nvinfer1::ITensor *> itensors = {attn, x, mask, new_mask};
  auto *layer = engine_->AddDynamicPlugin(itensors.data(), 4, plugin);
  PADDLE_ENFORCE_NOT_NULL(layer,
                          platform::errors::InvalidArgument(
                              "TRT fused_token_prune layer building failed."));
  std::vector<std::string> output_tensor_names{"out_slimmed_x", "out_cls_inds"};
  for (size_t i = 0; i < 2; i++) {
    layer->getOutput(i)->setName(output_tensor_names[i].c_str());
    engine_->DeclareOutput(layer, i, output_tensor_names[i]);
  }
  engine_->FreezeNetwork();

  ASSERT_EQ(engine_->engine()->getNbBindings(), 6);
  LOG(INFO) << "create input";
452 453 454 455 456 457 458 459 460 461 462 463 464
  std::vector<float> attn_v(16);
  for (int j = 0; j < 4; ++j) {
    for (int k = 0; k < 4; ++k) {
      attn_v[j * 4 + k] = k;
    }
  }
  std::vector<float> x_v(16);
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      x_v[i * 4 + j] = 4 - j;
    }
  }
  std::vector<float> mask_v(64);
465 466 467
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      for (int k = 0; k < 4; ++k) {
468
        mask_v[i * 16 + j * 4 + k] = 1;
469 470 471
      }
    }
  }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
  std::vector<float> new_mask_v(16);
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 2; ++j) {
      for (int k = 0; k < 2; ++k) {
        new_mask_v[i * 4 + j * 2 + k] = 1;
      }
    }
  }

  LOG(INFO) << "create output";
  std::vector<int> out_slimmed_x_shape{4, 2, 1};
  std::vector<int> out_cls_ins_shape{4, 2};

  PrepareInputOutput({attn_v, x_v, mask_v, new_mask_v},
                     {out_slimmed_x_shape, out_cls_ins_shape});

  auto *attn_gpu_data = inputs_[0].mutable_data<float>(ctx_->GetPlace());
  auto *x_gpu_data = inputs_[1].mutable_data<float>(ctx_->GetPlace());
  auto *mask_gpu_data = inputs_[2].mutable_data<float>(ctx_->GetPlace());
  auto *new_mask_gpu_data = inputs_[3].mutable_data<float>(ctx_->GetPlace());

  auto *slimmed_x_gpu_data = outputs_[0].mutable_data<float>(ctx_->GetPlace());
  auto *cls_inds_gpu_data = outputs_[1].mutable_data<int32_t>(ctx_->GetPlace());

  LOG(INFO) << "create buffers";

  std::vector<void *> buffers(6);
  buffers[0] = reinterpret_cast<void *>(attn_gpu_data);
  buffers[1] = reinterpret_cast<void *>(x_gpu_data);
  buffers[2] = reinterpret_cast<void *>(mask_gpu_data);
  buffers[3] = reinterpret_cast<void *>(new_mask_gpu_data);
  buffers[4] = reinterpret_cast<void *>(slimmed_x_gpu_data);
  buffers[5] = reinterpret_cast<void *>(cls_inds_gpu_data);

  LOG(INFO) << "Execute";

  engine_->Execute(4, &buffers, ctx_->stream());

  std::vector<float> slimmed_x_v(8);
  std::vector<int32_t> cls_inds_v;

  LOG(INFO) << "GetOutput";
  GetOutput(slimmed_x_v, cls_inds_v);

  // slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] ->
  // [[2,1],[2,1],[2,1],[2,1]]

  ASSERT_EQ(slimmed_x_v[0], 2);
  ASSERT_EQ(slimmed_x_v[1], 1);
  ASSERT_EQ(slimmed_x_v[2], 2);
  ASSERT_EQ(slimmed_x_v[3], 1);
  ASSERT_EQ(slimmed_x_v[4], 2);
  ASSERT_EQ(slimmed_x_v[5], 1);
  ASSERT_EQ(slimmed_x_v[6], 2);
  ASSERT_EQ(slimmed_x_v[7], 1);

  LOG(INFO) << "finish";
#endif
}

class TensorRTDynamicTestFusedTokenPruneHalf : public ::testing::Test {
 protected:
  void SetUp() override {
    ctx_ = new phi::GPUContext(platform::CUDAPlace(0));
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
    ctx_->PartialInitWithAllocator();

    std::map<std::string, std::vector<int>> min_input_shape = {
        {"attn", {4, 4}},
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
        {"attn", {4, 4}},
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};
    std::map<std::string, std::vector<int>> optim_input_shape = {
        {"attn", {4, 4}},
        {"x", {4, 4, 1}},
        {"mask", {4, 1, 4, 4}},
        {"new_mask", {4, 1, 2, 2}}};

    engine_ = new TensorRTEngine(16,
                                 1 << 10,
                                 AnalysisConfig::Precision::kHalf,
                                 nullptr,
                                 0,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
                                 std::map<std::string, std::vector<int>>(),
                                 false,
                                 phi::DataType::FLOAT16,
                                 NaiveLogger::Global());
    engine_->InitNetwork();
  }

  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }

  void PrepareInputOutput(const std::vector<std::vector<float16>> inputs,
                          std::vector<std::vector<int>> output_shapes) {
    LOG(INFO) << "PrepareInputOutput";
    int num_inputs = inputs.size();
    int num_outputs = output_shapes.size();
    inputs_.resize(num_inputs);
    outputs_.resize(num_outputs);
    for (int i = 0; i < num_inputs; ++i) {
      paddle::framework::TensorFromVector(inputs[i], *ctx_, &inputs_[i]);
    }
    for (int i = 0; i < num_outputs; ++i) {
      outputs_[i].Resize(phi::make_ddim(output_shapes[i]));
    }
  }

  void GetOutput(std::vector<float> &slimmed_x,     // NOLINT
                 std::vector<int32_t> &cls_inds) {  // NOLINT
    paddle::framework::TensorToVector(outputs_[0], *ctx_, &slimmed_x);
    paddle::framework::TensorToVector(outputs_[1], *ctx_, &cls_inds);
  }

 protected:
  std::vector<phi::DenseTensor> inputs_;
  std::vector<phi::DenseTensor> outputs_;
  TensorRTEngine *engine_;
  phi::GPUContext *ctx_;
};

TEST_F(TensorRTDynamicTestFusedTokenPruneHalf, test_fused_token_prune) {
#if IS_TRT_VERSION_GE(8000)
  tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt();
  auto *attn = engine_->DeclareInput(
      "attn", nvinfer1::DataType::kHALF, nvinfer1::Dims2{-1, 4});
  auto *x = engine_->DeclareInput(
      "x", nvinfer1::DataType::kHALF, nvinfer1::Dims3{-1, 4, 1});
  auto *mask = engine_->DeclareInput(
      "mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 4, 4});
  auto *new_mask = engine_->DeclareInput(
      "new_mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 2, 2});
  plugin::FusedTokenPrunePluginDynamic *plugin =
      new plugin::FusedTokenPrunePluginDynamic(/*with_fp16*/ true,
                                               /*keep_first_token*/ false,
                                               /*keep_order*/ true,
                                               /*flag_varseqlen*/ false);
  std::vector<nvinfer1::ITensor *> itensors = {attn, x, mask, new_mask};
  auto *layer = engine_->AddDynamicPlugin(itensors.data(), 4, plugin);
  PADDLE_ENFORCE_NOT_NULL(layer,
                          platform::errors::InvalidArgument(
                              "TRT fused_token_prune layer building failed."));
  std::vector<std::string> output_tensor_names{"out_slimmed_x", "out_cls_inds"};
  for (size_t i = 0; i < 2; i++) {
    layer->getOutput(i)->setName(output_tensor_names[i].c_str());
    engine_->DeclareOutput(layer, i, output_tensor_names[i]);
  }
  engine_->FreezeNetwork();

  ASSERT_EQ(engine_->engine()->getNbBindings(), 6);
  LOG(INFO) << "create input";
  std::vector<float16> attn_v(16);
  for (int j = 0; j < 4; ++j) {
    for (int k = 0; k < 4; ++k) {
      attn_v[j * 4 + k] = k;
    }
  }
657 658 659
  std::vector<float16> x_v(16);
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
660
      x_v[i * 4 + j] = 4 - j;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    }
  }
  std::vector<float16> mask_v(64);
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      for (int k = 0; k < 4; ++k) {
        mask_v[i * 16 + j * 4 + k] = 1;
      }
    }
  }
  std::vector<float16> new_mask_v(16);
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 2; ++j) {
      for (int k = 0; k < 2; ++k) {
        new_mask_v[i * 4 + j * 2 + k] = 1;
      }
    }
  }

  LOG(INFO) << "create output";
  std::vector<int> out_slimmed_x_shape{4, 2, 1};
  std::vector<int> out_cls_ins_shape{4, 2};

  PrepareInputOutput({attn_v, x_v, mask_v, new_mask_v},
                     {out_slimmed_x_shape, out_cls_ins_shape});

  auto *attn_gpu_data = inputs_[0].mutable_data<float16>(ctx_->GetPlace());
  auto *x_gpu_data = inputs_[1].mutable_data<float16>(ctx_->GetPlace());
  auto *mask_gpu_data = inputs_[2].mutable_data<float16>(ctx_->GetPlace());
  auto *new_mask_gpu_data = inputs_[3].mutable_data<float16>(ctx_->GetPlace());

  auto *slimmed_x_gpu_data = outputs_[0].mutable_data<float>(ctx_->GetPlace());
  auto *cls_inds_gpu_data = outputs_[1].mutable_data<int32_t>(ctx_->GetPlace());

  LOG(INFO) << "create buffers";

  std::vector<void *> buffers(6);
  buffers[0] = reinterpret_cast<void *>(attn_gpu_data);
  buffers[1] = reinterpret_cast<void *>(x_gpu_data);
  buffers[2] = reinterpret_cast<void *>(mask_gpu_data);
  buffers[3] = reinterpret_cast<void *>(new_mask_gpu_data);
  buffers[4] = reinterpret_cast<void *>(slimmed_x_gpu_data);
  buffers[5] = reinterpret_cast<void *>(cls_inds_gpu_data);

  LOG(INFO) << "Execute";

  engine_->Execute(4, &buffers, ctx_->stream());

709
  std::vector<float> slimmed_x_v(8);
710 711 712 713 714
  std::vector<int32_t> cls_inds_v;

  LOG(INFO) << "GetOutput";
  GetOutput(slimmed_x_v, cls_inds_v);

715 716 717 718 719 720 721 722 723 724 725 726
  // slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] ->
  // [[2,1],[2,1],[2,1],[2,1]]

  ASSERT_EQ(slimmed_x_v[0], 2);
  ASSERT_EQ(slimmed_x_v[1], 1);
  ASSERT_EQ(slimmed_x_v[2], 2);
  ASSERT_EQ(slimmed_x_v[3], 1);
  ASSERT_EQ(slimmed_x_v[4], 2);
  ASSERT_EQ(slimmed_x_v[5], 1);
  ASSERT_EQ(slimmed_x_v[6], 2);
  ASSERT_EQ(slimmed_x_v[7], 1);

727 728 729 730
  LOG(INFO) << "finish";
#endif
}

731 732 733
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle