conv_op.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/gemm_conv_op.h"

namespace paddle {
namespace operators {

int outputSize(int input_size, int filter_size, int padding, int stride) {
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class Conv2DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
H
hedaoyuan 已提交
31 32 33
    auto in = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto out = ctx.Output<Tensor>("Output");
H
hedaoyuan 已提交
34 35
    std::vector<int> strides = Attr<std::vector<int>>("strides");
    std::vector<int> paddings = Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
36
    int groups = Attr<int>("groups");
H
hedaoyuan 已提交
37 38 39
    int input_channels = in->dims()[1];
    int output_channels = filter->dims()[0];

40 41 42
    PADDLE_ENFORCE_EQ(in->dims().size(), 4, "Conv2DOp intput should be 4-D.");
    PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
                      "Conv2DOp filter should be 4-D.");
H
hedaoyuan 已提交
43 44 45 46 47 48
    PADDLE_ENFORCE_EQ(input_channels, filter->dims()[1] * groups,
                      "The number of input channels should be equal to filter "
                      "channels * groups.");
    PADDLE_ENFORCE_EQ(
        output_channels % groups, 0,
        "The number of output channels should be divided by groups.");
49 50 51 52 53 54 55 56 57 58

    auto output_height =
        outputSize(in->dims()[2], filter->dims()[2], paddings[0], strides[0]);
    auto output_width =
        outputSize(in->dims()[3], filter->dims()[3], paddings[1], strides[1]);
    out->Resize(
        {in->dims()[0], filter->dims()[0], output_height, output_width});
  }
};

H
hedaoyuan 已提交
59
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
60
 public:
H
hedaoyuan 已提交
61
  Conv2DOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
62 63 64 65 66 67 68 69 70 71
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Input",
        "The input tensor of convolution operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddInput(
        "Filter",
        "The filter tensor of convolution operator."
        "The format of the filter tensor is MCHW, where M is the number of "
H
hedaoyuan 已提交
72 73 74 75
        "output image channels, C is the number of input image channels, "
        "H and W is height and width of filter. "
        "If the groups attribute is greater than 1, C equal the number of "
        "input image channels divided by the groups.");
76 77 78 79
    AddOutput("Output",
              "The output tensor of convolution operator."
              "The format of output tensor is also NCHW.");
    AddComment(R"DOC(
H
hedaoyuan 已提交
80 81 82
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
83 84 85
)DOC");
    AddAttr<std::vector<int>>("strides", "strides of convolution operator.");
    AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.");
H
hedaoyuan 已提交
86 87 88 89 90 91 92 93
    AddAttr<int>(
        "groups",
        "group size of convolution operator. "
        "Refer to grouped convolution in Alex Krizhevsky's paper: "
        "when group=2, the first half of the filters are only connected to the "
        "first half of the input channels, and the second half only connected "
        "to the second half.")
        .SetDefault(1);
94 95 96 97 98 99 100 101
  }
};

class Conv2DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
H
hedaoyuan 已提交
102 103 104 105 106 107 108 109
  void InferShape(const framework::InferShapeContext &ctx) const override {
    auto in = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto d_in = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto d_filter = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    d_in->Resize(in->dims());
    d_filter->Resize(filter->dims());
  }
110 111 112 113 114 115
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hedaoyuan 已提交
116
REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad,
117 118 119 120 121 122
            ops::Conv2DOpGrad);

REGISTER_OP_CPU_KERNEL(conv2d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);