ConvOperator.cpp 8.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/math/Matrix.h"
16
#include "paddle/math/MathUtils.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "Operator.h"

namespace paddle {

/**
 * @brief ConvOperator takes two inputs to perform the convolution.
 * The first input is the image, and the second input is the convolution kernel.
 * The height of data for two inputs are the same. Each data of the first input
 * is convolved with each data of the second input indepedently.
 *
 * The config file api is conv_operator.
 */

class ConvOperator : public Operator {
public:
  ConvOperator(const OperatorConfig &config, bool useGpu);
  /**
   * Free workspace in device and destroy cudnn tensor descriptor.
   */
  virtual ~ConvOperator() {
    if (workSpaceInBytes_ != 0) {
38 39
      hl_free_mem_device(workSpace_);
      workSpaceInBytes_ = 0;
Z
zhangjinchao01 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    }

    hl_destroy_tensor_descriptor(inputDesc_);
    hl_destroy_tensor_descriptor(outputDesc_);
    hl_destroy_filter_descriptor(filterDesc_);
    hl_destroy_convolution_descriptor(convDesc_);
  }
  virtual void forward();
  virtual void backward();

private:
  /**
   * Get convolution parameters from layer config and
   * initialize member variables.
   */
  void getConvParams();

  /**
   * Allocate Gpu Memory for cudnn convolution algorithms.
   */
  void allocConvWorkSpace(size_t maxWorkSpace);

  /**
   * Create cudnn tensor descriptor for convolution operation.
   */
  void computeConvSizes();

  /**
   * Reshape cudnn tensor descriptor.
   */
  void reshapeImageDescriptors();

  /**
   * Reshape cudnn tensor descriptor.
   */
  void reshape(int batchSize);

  /**
   * Check filter size is equal to the size calculated by parameters from
   * layer config.
   */
  void checkFilterSize(const MatrixPtr &filter) {
    CHECK_EQ(static_cast<int>(filter->getWidth()),
             filterSize_ * filterSizeY_ * channels_ * numFilters_);
  }

  /// Most of member variables are same with CudnnConvLayer.
  /// There is no explanation here.
  int imageH_, imageW_, outputH_, outputW_;
  hl_tensor_descriptor inputDesc_;
  hl_tensor_descriptor outputDesc_;
  hl_filter_descriptor filterDesc_;
  hl_convolution_descriptor convDesc_;
  bool caffeMode_;
  int inputOffset_, outputOffset_, weightOffset_;
  int numFilters_;
  int padding_, stride_, filterSize_, channels_, imgSize_;
  int paddingY_, strideY_, filterSizeY_;
  int imgPixels_, filterPixels_, filterChannels_, outputX_, outputs_;

  /// Following member variables are same with CudnnConvLayer.
  /// There is no explanation here.
  int fwdAlgo_, bwdFilterAlgo_, bwdDataAlgo_;
  size_t fwdLimitBytes_, bwdDataLimitBytes_, bwdFilterLimitBytes_;
  size_t workSpaceInBytes_;
105
  void *workSpace_;
Z
zhangjinchao01 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  bool isSelectAlgo_;
};

REGISTER_OPERATOR(conv, ConvOperator);

ConvOperator::ConvOperator(const OperatorConfig &config, bool useGpu)
    : Operator(config, useGpu) {
  CHECK(useGpu);
  CHECK_EQ(config_.input_indices_size(), 2L);

  caffeMode_ = true;
  getConvParams();
  computeConvSizes();

  // initialize all to default algorithms
  fwdAlgo_ = 0;
  bwdFilterAlgo_ = 0;
  bwdDataAlgo_ = 0;
  fwdLimitBytes_ = 0;
  bwdDataLimitBytes_ = 0;
  bwdFilterLimitBytes_ = 0;
  workSpaceInBytes_ = 0;
  workSpace_ = nullptr;

  isSelectAlgo_ = false;
}

void ConvOperator::allocConvWorkSpace(size_t maxWorkSpace) {
  if (maxWorkSpace > workSpaceInBytes_) {
    if (workSpaceInBytes_ != 0) {
136
      hl_free_mem_device(workSpace_);
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148
    }
    // total amount of storage needed
    workSpace_ = hl_malloc_device(maxWorkSpace);
    workSpaceInBytes_ = maxWorkSpace;
  }
}

void ConvOperator::reshape(int batchSize) {
  imageH_ = ins_[0]->getFrameHeight();
  imageW_ = ins_[0]->getFrameWidth();
  if (imageH_ == 0) imageH_ = imgSize_;
  if (imageW_ == 0) imageW_ = imgSize_;
149 150
  outputH_ = outputSize(imageH_, filterSizeY_, paddingY_, strideY_, caffeMode_);
  outputW_ = outputSize(imageW_, filterSize_, padding_, stride_, caffeMode_);
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157

  out_->setFrameHeight(outputH_);
  out_->setFrameWidth(outputW_);

  reshapeImageDescriptors();

  if (!isSelectAlgo_) {
158 159 160 161
    hl_conv_workspace(inputDesc_, outputDesc_, filterDesc_, convDesc_,
                      &fwdAlgo_, &fwdLimitBytes_, &bwdDataAlgo_,
                      &bwdDataLimitBytes_, &bwdFilterAlgo_,
                      &bwdFilterLimitBytes_);
Z
zhangjinchao01 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    size_t maxWorkSpace = 0;
    maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_);
    maxWorkSpace = std::max(maxWorkSpace, bwdFilterLimitBytes_);

    allocConvWorkSpace(maxWorkSpace);
  }

  isSelectAlgo_ = true;
}

void ConvOperator::computeConvSizes() {
  hl_create_filter_descriptor(&filterDesc_, channels_, numFilters_,
                              filterSizeY_, filterSize_);
  hl_create_tensor_descriptor(&inputDesc_);
177 178
  int outputX =
      outputSize(imgSize_, filterSize_, padding_, stride_, caffeMode_);
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186
  CHECK_EQ(outputX, outputX_);
  hl_create_tensor_descriptor(&outputDesc_);
  hl_create_convolution_descriptor(&convDesc_, inputDesc_, filterDesc_,
                                   paddingY_, padding_, strideY_, stride_);
}

void ConvOperator::reshapeImageDescriptors() {
  hl_tensor_reshape(inputDesc_, 1, channels_, imageH_, imageW_,
187 188
                    channels_ * imageH_ * imageW_, imageH_ * imageW_, imageW_,
                    1);
Z
zhangjinchao01 已提交
189 190 191
  hl_tensor_reshape(outputDesc_, 1, numFilters_, outputH_, outputW_,
                    numFilters_ * outputH_ * outputW_, outputH_ * outputW_,
                    outputW_, 1);
192 193
  hl_reset_convolution_descriptor(convDesc_, inputDesc_, filterDesc_, paddingY_,
                                  padding_, strideY_, stride_);
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  inputOffset_ = channels_ * imageH_ * imageW_;
  outputOffset_ = numFilters_ * outputH_ * outputW_;
  weightOffset_ = numFilters_ * channels_ * filterSize_ * filterSize_;
}

void ConvOperator::getConvParams() {
  numFilters_ = config_.num_filters();
  const ConvConfig &conf = config_.conv_conf();
  padding_ = conf.padding();
  stride_ = conf.stride();
  filterSize_ = conf.filter_size();
  paddingY_ = conf.padding_y();
  strideY_ = conf.stride_y();
  filterSizeY_ = conf.filter_size_y();
  filterPixels_ = filterSize_ * filterSizeY_;
  channels_ = conf.channels();
  imgSize_ = conf.img_size();
  imgPixels_ = imgSize_ * imgSize_;
  CHECK_EQ(conf.groups(), 1U);
  filterChannels_ = conf.filter_channels();
  outputX_ = conf.output_x();
  outputs_ = outputX_ * outputX_;
}

void ConvOperator::forward() {
  size_t batchSize = ins_[0]->value->getHeight();
  reshape(batchSize);
  CHECK_EQ(ins_[1]->value->getHeight(), batchSize);
  checkFilterSize(ins_[1]->value);
  Matrix::resizeOrCreate(out_->value, batchSize,
224
                         outputH_ * outputW_ * numFilters_, false, useGpu_);
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  {
    AsyncGpuBlock block;
    for (size_t batchId = 0; batchId < batchSize; ++batchId) {
      real *inputData = ins_[0]->value->getData() + inputOffset_ * batchId;
      real *wgtData = ins_[1]->value->getData() + weightOffset_ * batchId;
      real *outData = out_->value->getData() + outputOffset_ * batchId;
      hl_convolution_forward(inputDesc_, inputData, outputDesc_, outData,
                             filterDesc_, wgtData, convDesc_, workSpace_,
                             workSpaceInBytes_, fwdAlgo_);
    }
  }
}

void ConvOperator::backward() {
  size_t batchSize = ins_[0]->value->getHeight();
  {
    AsyncGpuBlock block;
    for (size_t batchId = 0; batchId < batchSize; ++batchId) {
      real *outGrad = out_->grad->getData() + outputOffset_ * batchId;
      if (ins_[1]->grad) {
        real *inputData = ins_[0]->value->getData() + inputOffset_ * batchId;
        real *weightGrad = ins_[1]->grad->getData() + weightOffset_ * batchId;
        hl_convolution_backward_filter(inputDesc_, inputData, outputDesc_,
                                       outGrad, filterDesc_, weightGrad,
249 250
                                       convDesc_, workSpace_, workSpaceInBytes_,
                                       bwdFilterAlgo_);
Z
zhangjinchao01 已提交
251 252 253 254 255 256
      }

      MatrixPtr preGrad = ins_[0]->grad;
      if (NULL != preGrad) {
        real *inputGrad = preGrad->getData() + inputOffset_ * batchId;
        real *wgtData = ins_[1]->value->getData() + weightOffset_ * batchId;
257 258 259
        hl_convolution_backward_data(
            inputDesc_, inputGrad, outputDesc_, outGrad, filterDesc_, wgtData,
            convDesc_, workSpace_, workSpaceInBytes_, bwdDataAlgo_);
Z
zhangjinchao01 已提交
260 261 262 263 264 265
      }
    }
  }
}

}  // namespace paddle