fill_constant_op.h 4.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include <sstream>
#include <string>
X
Xin Pan 已提交
19 20 21 22 23 24 25
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {
L
liym27 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

using Tensor = framework::Tensor;

inline framework::DDim GetShape(const framework::ExecutionContext &ctx) {
  // 1. shape is a Tensor
  if (ctx.HasInput("ShapeTensor")) {
    auto *shape_tensor = ctx.Input<framework::LoDTensor>("ShapeTensor");
    auto *shape_data = shape_tensor->data<int>();
    framework::Tensor cpu_shape_tensor;
    if (platform::is_gpu_place(shape_tensor->place())) {
      TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
      shape_data = cpu_shape_tensor.data<int>();
    }
    auto vec_shape =
        std::vector<int>(shape_data, shape_data + shape_tensor->numel());
    return framework::make_ddim(vec_shape);
  }

  // 2. shape is a list/tuple containing Tensor
  auto shape_tensor_list = ctx.MultiInput<framework::Tensor>("ShapeTensorList");
  if (shape_tensor_list.size() > 0) {
    std::vector<int> vec_shape;
    for (size_t i = 0; i < shape_tensor_list.size(); ++i) {
      auto tensor = shape_tensor_list[i];
      PADDLE_ENFORCE_EQ(
          tensor->dims(), framework::make_ddim({1}),
          "ShapeError: If the element type of 'shape' in FillConstantOp is "
          "Tensor, "
          "the element's shape must be [1]. But received the element's shape "
          "is [%s]",
          tensor->dims());
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_shape.push_back(*temp.data<int>());
      } else {
        vec_shape.push_back(*tensor->data<int>());
      }
    }
    return framework::make_ddim(vec_shape);
  }

  // 3. shape is a list/tuple without containing Tensor
  auto vec_shape = ctx.Attr<std::vector<int64_t>>("shape");
  return framework::make_ddim(vec_shape);
}

X
Xin Pan 已提交
73 74 75 76 77 78
template <typename T>
class FillConstantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
79 80
    auto str_value = ctx.Attr<std::string>("str_value");
    auto float_value = ctx.Attr<float>("value");
X
Xin Pan 已提交
81 82 83 84 85
    auto force_cpu = ctx.Attr<bool>("force_cpu");
    framework::Tensor *tensor = nullptr;

    framework::Variable *out_var = ctx.OutputVar("Out");

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    T value;
    if (str_value.empty()) {
      value = static_cast<T>(float_value);
    } else {
      std::stringstream convert_stream(str_value);
      if (std::is_same<int64_t, T>::value) {
        int64_t tmp_value;
        convert_stream >> tmp_value;
        value = static_cast<T>(tmp_value);
      } else {
        double tmp_value;
        convert_stream >> tmp_value;
        value = static_cast<T>(tmp_value);
      }
    }
L
liym27 已提交
101 102
    auto shape = GetShape(ctx);

X
Xin Pan 已提交
103 104
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
L
liym27 已提交
105
      tensor->Resize(shape);
X
Xin Pan 已提交
106 107
    } else if (out_var->IsType<framework::SelectedRows>()) {
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
L
liym27 已提交
108
      tensor->Resize(shape);
X
Xin Pan 已提交
109 110 111 112 113 114
    } else {
      PADDLE_THROW(
          "fill constant op's output only"
          "supports SelectedRows and LoDTensor");
    }

115 116 117 118
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
    bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
    if (cpu_place) {
X
Xin Pan 已提交
119
      tensor->mutable_data(platform::CPUPlace(), data_type);
120 121 122 123 124 125
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
#ifdef PADDLE_WITH_CUDA
    if (!cpu_place) {
X
Xin Pan 已提交
126
      tensor->mutable_data(ctx.GetPlace(), data_type);
127 128 129
      math::SetConstant<platform::CUDADeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CUDADeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
X
Xin Pan 已提交
130
    }
131
#endif
X
Xin Pan 已提交
132 133 134 135
  }
};
}  // namespace operators
}  // namespace paddle