pten_utils.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <sstream>

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20
#include "paddle/fluid/framework/pten_utils.h"

#include "paddle/fluid/framework/lod_tensor.h"
Z
Zeng Jinle 已提交
21
#include "paddle/fluid/framework/op_info.h"
22
#include "paddle/fluid/framework/selected_rows_utils.h"
23 24
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/string/string_helper.h"
25 26 27
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
28 29 30 31

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker {
 public:
  explicit KernelArgsNameMakerByOpProto(
      const framework::proto::OpProto* op_proto)
      : op_proto_(op_proto) {
    PADDLE_ENFORCE_NOT_NULL(op_proto_, platform::errors::InvalidArgument(
                                           "Op proto cannot be nullptr."));
  }

  ~KernelArgsNameMakerByOpProto() {}

  const paddle::SmallVector<std::string>& GetInputArgsNames() override;
  const paddle::SmallVector<std::string>& GetOutputArgsNames() override;
  const paddle::SmallVector<std::string>& GetAttrsArgsNames() override;

  KernelSignature GetKernelSignature();

 private:
  DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto);

 private:
  const framework::proto::OpProto* op_proto_;

  paddle::SmallVector<std::string> input_names_;
  paddle::SmallVector<std::string> output_names_;
  paddle::SmallVector<std::string> attr_names_;
};

60
OpKernelType TransPtenKernelKeyToOpKernelType(
61
    const phi::KernelKey& kernel_key) {
62
  proto::VarType::Type data_type =
63
      paddle::framework::TransToProtoVarType(kernel_key.dtype());
64
  // no need to set current device id here
65
  platform::Place place = phi::TransToPtenPlace(kernel_key.backend(), false);
66
  DataLayout data_layout = kernel_key.layout();
67
  LibraryType library_type = LibraryType::kPlain;
68
  if (kernel_key.backend() == phi::Backend::MKLDNN) {
69
    library_type = LibraryType::kMKLDNN;
70
  } else if (kernel_key.backend() == phi::Backend::CUDNN) {
71 72 73 74 75 76 77 78
    library_type = LibraryType::kCUDNN;
  } else {
    // do nothing
  }
  // TODO(chenweihang): the customized_type_value is lost
  return OpKernelType(data_type, place, data_layout, library_type);
}

79
phi::KernelKey TransOpKernelTypeToPtenKernelKey(
80
    const OpKernelType& kernel_type) {
81
  phi::Backend backend = phi::TransToPtenBackend(kernel_type.place_);
82
  if (kernel_type.library_type_ == LibraryType::kMKLDNN) {
83
    backend = phi::Backend::MKLDNN;
84
  } else if (kernel_type.library_type_ == LibraryType::kCUDNN) {
85
    backend = phi::Backend::CUDNN;
86 87 88
  } else {
    // do
  }
89
  paddle::experimental::DataLayout layout = kernel_type.data_layout_;
90
  paddle::experimental::DataType dtype =
91
      paddle::framework::TransToPtenDataType(kernel_type.data_type_);
92
  return phi::KernelKey(backend, layout, dtype);
93 94
}

95 96 97
phi::KernelKey FallBackToCpu(const OpKernelType& expected_kernel_key,
                             const phi::KernelKey& kernel_key,
                             const framework::OperatorBase& op) {
98 99 100 101 102 103
#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(expected_kernel_key.place_) ||
      paddle::platform::is_in_xpu_black_list(op.Type())) {
    VLOG(3) << "pten missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
104 105
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
106 107 108 109 110 111 112
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "pten missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
113 114
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
115 116 117 118 119 120 121
  }
#endif
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(expected_kernel_key.place_)) {
    VLOG(3) << "pten missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
122 123
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
124 125
  }
#endif
126
  return phi::KernelKey();
127 128
}

129 130 131 132 133 134
const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetInputArgsNames() {
  for (int i = 0; i < op_proto_->inputs_size(); ++i) {
    auto& in = op_proto_->inputs()[i];
    auto& in_name = in.name();
    if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) {
135
      VLOG(6) << "Parse PtenKernel input: skip extra & quant input - "
136 137 138 139
              << in_name;
      continue;
    }
    // If contains dispensable input, we should override the
140
    // OpArgumentMapping method self in phi/ops/compat dir
141
    if (in.has_dispensable() && in.dispensable()) {
142
      VLOG(6) << "Parse PtenKernel input: skip dispensable input - " << in_name;
143 144
      continue;
    }
145
    VLOG(6) << "Parse PtenKernel input: " << in_name;
146 147 148 149 150 151 152 153 154 155
    input_names_.emplace_back(in_name);
  }
  return input_names_;
}

const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetOutputArgsNames() {
  for (int i = 0; i < op_proto_->outputs_size(); ++i) {
    auto& out = op_proto_->outputs()[i];
    auto& out_name = out.name();
156 157 158 159 160
    if ((out.has_extra() && out.extra()) || (out.has_quant() && out.quant())) {
      VLOG(6) << "Parse PtenKernel output: skip extra & quant output - "
              << out_name;
      continue;
    }
161
    VLOG(6) << "Parse PtenKernel output: " << out_name;
162 163 164 165 166 167 168 169 170 171
    output_names_.emplace_back(out_name);
  }
  return output_names_;
}

const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetAttrsArgsNames() {
  for (int i = 0; i < op_proto_->attrs_size(); ++i) {
    auto& attr = op_proto_->attrs()[i];
    auto& attr_name = attr.name();
172 173 174 175
    if (attr_name == "use_mkldnn" || attr_name == "use_cudnn" ||
        attr_name == "op_role" || attr_name == "op_role_var" ||
        attr_name == "op_namescope" || attr_name == "op_callstack" ||
        attr_name == "op_device") {
176
      VLOG(6) << "Parse PtenKernel attribute: skip needless attr - "
177 178 179 180 181
              << attr_name;
      continue;
    }
    if ((attr.has_extra() && attr.extra()) ||
        (attr.has_quant() && attr.quant())) {
182
      VLOG(6) << "Parse PtenKernel attribute: skip extra & quant attr - "
183 184 185
              << attr_name;
      continue;
    }
186
    VLOG(6) << "Parse PtenKernel attribute: " << attr_name;
187 188 189 190 191 192 193
    attr_names_.emplace_back(attr_name);
  }

  return attr_names_;
}

KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() {
194
  return KernelSignature(phi::TransToPtenKernelName(op_proto_->type()),
195 196
                         GetInputArgsNames(), GetAttrsArgsNames(),
                         GetOutputArgsNames());
197 198
}

199 200 201 202 203 204 205
std::once_flag kernel_sig_map_init_flag;

void InitDefaultKernelSignatureMap() {
  std::call_once(kernel_sig_map_init_flag, [] {
    for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) {
      const auto& op_type = pair.first;
      const auto* op_proto = pair.second.proto_;
206
      if (phi::KernelFactory::Instance().HasCompatiblePtenKernel(op_type) &&
207 208 209
          op_proto) {
        paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto);
        VLOG(10) << "Register kernel signature for " << op_type;
210
        phi::DefaultKernelSignatureMap::Instance().Insert(
211 212 213 214 215 216
            op_type, std::move(maker.GetKernelSignature()));
      }
    }
  });
}

217
static void SetAllocationForUninitializedDenseTensor(
218
    phi::DenseTensor* dense_tensor, const platform::Place& place) {
219 220 221 222 223 224 225 226 227
  int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED
                       ? 0
                       : experimental::SizeOf(dense_tensor->dtype());
  int64_t numels = product(dense_tensor->dims());
  numels = numels < 0 ? 0 : numels;
  auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size);
  auto& deleter = tmp_allocation_ptr.get_deleter();
  auto* allocation_ptr = tmp_allocation_ptr.release();
  auto shared_allocation =
228
      std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
229 230 231 232

  dense_tensor->ResetHolder(shared_allocation);
}

233
void SetAllocationForOutputTenosr(phi::TensorBase* tensor,
234
                                  const platform::Place& place) {
235 236
  if (phi::DenseTensor::classof(tensor)) {
    auto* dense_tensor = static_cast<phi::DenseTensor*>(tensor);
237 238 239
    if (!dense_tensor->IsInitialized() || !(dense_tensor->place() == place)) {
      SetAllocationForUninitializedDenseTensor(dense_tensor, place);
    }
240 241
  } else if (phi::SelectedRows::classof(tensor)) {
    auto* selected_rows = static_cast<phi::SelectedRows*>(tensor);
242 243 244 245 246 247 248 249 250
    if (!selected_rows->value().IsInitialized() ||
        !(selected_rows->place() == place)) {
      SetAllocationForUninitializedDenseTensor(selected_rows->mutable_value(),
                                               place);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported tensor type is received when setting allocation for "
        "output tensor."));
251 252 253
  }
}

254 255
}  // namespace framework
}  // namespace paddle