gather.cu.h 11.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16 17 18
#include <vector>
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/tensor.h"
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/cuda_primitives.h"
23
#include "paddle/fluid/platform/gpu_launch_config.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/place.h"
Z
zchen0211 已提交
25 26 27 28
namespace paddle {
namespace operators {

using framework::Tensor;
Q
QI JUN 已提交
29
using platform::DeviceContext;
Z
zchen0211 已提交
30

31 32
template <typename T, typename IndexT = int>
__global__ void GatherCUDAKernel(const T* params, const IndexT* indices,
33 34
                                 T* output, size_t input_size,
                                 size_t index_size, size_t slice_size) {
35
  CUDA_KERNEL_LOOP(i, index_size * slice_size) {
Z
zchen0211 已提交
36 37
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
38 39
    IndexT gather_i = indices[indices_i];
    IndexT params_i = gather_i * slice_size + slice_i;
40 41 42 43 44 45 46
    PADDLE_ENFORCE(
        gather_i >= 0 && gather_i < input_size,
        "The index is out of bounds, "
        "please check whether the dimensions of index and "
        "input meet the requirements. It should "
        "be less than [%d] and greater than or equal to 0, but received [%d]",
        input_size, gather_i);
Z
zchen0211 已提交
47 48 49 50
    *(output + i) = *(params + params_i);
  }
}

51 52 53 54 55
template <typename T, typename IndexT = int>
__global__ void GatherNdCUDAKernel(const T* input, const int* input_dims,
                                   const IndexT* indices, T* output,
                                   size_t remain_size, size_t slice_size,
                                   size_t end_size) {
56
  CUDA_KERNEL_LOOP(i, remain_size * slice_size) {
57 58 59 60 61 62
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = 0;
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      auto index_value = indices[indices_i * end_size + j];
63 64 65 66 67
      PADDLE_ENFORCE(
          index_value >= 0 && index_value < input_dims[j],
          "The index is out of bounds, "
          "please check whether the dimensions of index and "
          "input meet the requirements. It should "
68
          "be less than [%d] and greater than or equal to 0, but received [%d]",
69
          input_dims[j], index_value);
70 71 72 73 74 75 76 77
      gather_i += (index_value * temp);
      temp *= input_dims[j];
    }
    IndexT input_i = gather_i + slice_i;
    *(output + i) = *(input + input_i);
  }
}

Z
zchen0211 已提交
78 79 80 81
/**
 * A thin wrapper on gpu tensor
 * Return a new tensor from source tensor, gathered according to index
 * input[src]: type-T source Tensor
82
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
83 84
 * return: output tensor
 */
85
template <typename T, typename IndexT = int>
86 87
void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
               const Tensor& index, Tensor* output) {
Z
zchen0211 已提交
88
  // check index of shape 1-D
C
chengduo 已提交
89 90
  if (index.dims().size() == 1) {
    PADDLE_ENFORCE_GT(index.dims()[0], 0,
91 92 93
                      platform::errors::InvalidArgument(
                          "The index of gather_op should not be empty"
                          "when the index's rank is 1."));
C
chengduo 已提交
94 95
  } else if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
96 97 98
                      platform::errors::InvalidArgument(
                          "If the index's rank of gather_op is 2,"
                          " the second dimension should be 1."));
C
chengduo 已提交
99
  }
Y
Yibing Liu 已提交
100

101
  // index size
102
  int index_size = index.dims()[0];
Z
zchen0211 已提交
103

104
  auto src_dims = src.dims();
Z
zchen0211 已提交
105 106 107 108 109 110
  framework::DDim output_dims(src_dims);
  output_dims[0] = index_size;

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
111 112
  // input size
  int input_size = src_dims[0] * slice_size;
Z
zchen0211 已提交
113

114
  const T* p_src = src.data<T>();
115
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
116 117 118 119 120
  T* p_output = output->data<T>();

  int block = 512;
  int n = slice_size * index_size;
  int grid = (n + block - 1) / block;
Z
zchen0211 已提交
121

122
  GatherCUDAKernel<T, IndexT><<<
Z
zchen0211 已提交
123 124
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
125
      p_src, p_index, p_output, input_size, index_size, slice_size);
Z
zchen0211 已提交
126 127
}

128 129 130 131
template <typename DeviceContext, typename T, typename IndexT = int>
void GPUGatherNd(const framework::ExecutionContext& context,
                 const Tensor& input, const Tensor& index, Tensor* output) {
  const auto& ctx = context.template device_context<DeviceContext>();
132
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  auto cplace = platform::CPUPlace();

  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  auto input_dims = input.dims();
  auto input_dims_size = input_dims.size();

  const T* p_input = input.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < input_dims_size; ++i) {
    slice_size *= input_dims[i];
  }
  // source dim
  std::vector<int> v_input_dims(input_dims_size);
  for (int i = 0; i < input_dims_size; ++i) {
    v_input_dims[i] = static_cast<int>(input_dims[i]);
  }

  auto& dev_ctx = context.cuda_device_context();
  int bytes = input_dims_size * sizeof(int);
162
  auto p_input_dims = memory::Alloc(dev_ctx, bytes);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  int* g_input_dims = reinterpret_cast<int*>(p_input_dims->ptr());
  memory::Copy(gplace, g_input_dims, cplace, v_input_dims.data(), bytes,
               ctx.stream());

  int block = 512;
  int n = slice_size * remain_numel;
  int grid = (n + block - 1) / block;

  GatherNdCUDAKernel<T, IndexT><<<
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_input, g_input_dims, p_index, p_output, remain_numel, slice_size,
      end_size);
}

178 179 180 181 182 183
template <typename T, typename U>
__global__ void GatherGPUKernel(const T* input, const U* index, T* out,
                                int outer_dim_size, int inner_dim_size,
                                int out_index_dim_size,
                                int input_index_dim_size, int size) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
184
  int outer_size = outer_dim_size * out_index_dim_size;
185
  for (; idx < size; idx += blockDim.x * gridDim.x) {
186 187 188 189
    int inner_dim_index = idx / outer_size;
    int next_idx = idx - outer_size * inner_dim_index;
    int index_dim_index = next_idx / outer_dim_size;
    int index_val = index[index_dim_index];
190 191 192 193 194 195 196 197 198

    PADDLE_ENFORCE(
        index_val >= 0 && index_val < input_index_dim_size,
        "The index is out of bounds, "
        "please check whether the dimensions of index and "
        "input meet the requirements. It should "
        "be less than [%d] and greater than or equal to 0, but received [%d]",
        input_index_dim_size, index_val);

199
    int out_dim_index = next_idx - outer_dim_size * index_dim_index;
200 201
    int input_index =
        inner_dim_index * (outer_dim_size * input_index_dim_size) +
202
        index_val * outer_dim_size + out_dim_index;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    out[idx] = input[input_index];
  }
}

template <typename T, typename U>
__global__ void GatherGradGPUKernel(const T* input, const U* index, T* out,
                                    int outer_dim_size, int inner_dim_size,
                                    int input_index_dim_size,
                                    int out_index_dim_size, int size) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (; idx < size; idx += blockDim.x * gridDim.x) {
    int inner_dim_index = idx / (outer_dim_size * input_index_dim_size);
    int next_idx = idx % (outer_dim_size * input_index_dim_size);
    int index_dim_index = next_idx / (outer_dim_size);
    int out_dim_index = next_idx % outer_dim_size;
    int out_index = inner_dim_index * (outer_dim_size * out_index_dim_size) +
                    index[index_dim_index] * outer_dim_size + out_dim_index;
    paddle::platform::CudaAtomicAdd(out + out_index, *(input + idx));
  }
}

224
template <typename T, typename U>
225
void GatherV2CUDAFunction(const Tensor* input, const Tensor* index,
226
                          const int axis, Tensor* out,
227 228 229 230 231 232 233 234 235
                          const paddle::platform::Place& place,
                          const framework::ExecutionContext& ctx) {
  int index_size = index->numel();
  int input_size = input->numel();
  auto input_dim = input->dims();
  auto* input_data = input->data<T>();
  auto* index_data = index->data<U>();

  if (input->numel() == 0) return;
236 237

  int axis_index = axis;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  int index_dim_size = input_dim[axis_index];

  int inner_dim_size = 1;
  int outer_dim_size = 1;
  std::vector<int> out_dim_vec;

  for (int i = 0; i < axis_index; i++) {
    inner_dim_size *= input_dim[i];
    out_dim_vec.push_back(input_dim[i]);
  }
  out_dim_vec.push_back(index_size);
  for (int i = axis_index + 1; i < input_dim.size(); i++) {
    outer_dim_size *= input_dim[i];
    out_dim_vec.push_back(input_dim[i]);
  }
  auto out_dim = framework::make_ddim(out_dim_vec);

  out->Resize(out_dim);
  auto* out_data = out->mutable_data<T>(place);
  int out_size = out->numel();

259 260
  platform::GpuLaunchConfig config =
      platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), out_size);
261
  auto stream = ctx.cuda_device_context().stream();
262 263
  GatherGPUKernel<
      T, U><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
264 265 266 267
      input_data, index_data, out_data, outer_dim_size, inner_dim_size,
      index_size, index_dim_size, out_size);
}

268
template <typename T, typename U>
269
void GatherV2GradCUDAFunction(const Tensor* input, const Tensor* index,
270
                              const int axis, Tensor* out,
271 272 273 274 275 276 277 278 279
                              const paddle::platform::Place& place,
                              const framework::ExecutionContext& ctx) {
  auto* index_data = index->data<U>();
  int index_size = index->numel();
  int input_size = input->numel();
  auto input_dim = input->dims();
  auto* input_data = input->data<T>();

  if (input->numel() == 0) return;
280
  int axis_index = axis;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  int input_index_dim_size = input_dim[axis_index];

  int inner_dim_size = 1;
  int outer_dim_size = 1;

  for (int i = 0; i < axis_index; i++) {
    inner_dim_size *= input_dim[i];
  }
  for (int i = axis_index + 1; i < input_dim.size(); i++) {
    outer_dim_size *= input_dim[i];
  }

  auto* out_data = out->mutable_data<T>(place);
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
  auto out_dim = out->dims();
  int out_index_dim_size = out_dim[axis_index];
  operators::math::set_constant(*dev_ctx, out, 0.0);

299 300
  platform::GpuLaunchConfig config =
      platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), input_size);
301
  auto stream = ctx.cuda_device_context().stream();
302 303
  GatherGradGPUKernel<
      T, U><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
304 305 306
      input_data, index_data, out_data, outer_dim_size, inner_dim_size,
      input_index_dim_size, out_index_dim_size, input_size);
}
Z
zchen0211 已提交
307 308
}  // namespace operators
}  // namespace paddle