test_scale_op.py 9.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17

import gradient_checker
Y
Yu Yang 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.core as core
25
import paddle.fluid.layers as layers
26
from paddle.fluid.op import Operator
27
from paddle.static import Program, program_guard
Y
Yu Yang 已提交
28 29


30
class TestScaleOp(OpTest):
Y
Yu Yang 已提交
31
    def setUp(self):
Q
qijun 已提交
32
        self.op_type = "scale"
33
        self.python_api = paddle.scale
34
        self.dtype = np.float64
C
chengduo 已提交
35 36
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
37
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
38 39 40 41 42 43
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
44

Q
qijun 已提交
45
    def test_check_output(self):
46
        self.check_output(check_eager=True)
Y
Yu Yang 已提交
47

Q
qijun 已提交
48
    def test_check_grad(self):
49
        self.check_grad(['X'], 'Out', check_eager=True)
Y
Yu Yang 已提交
50 51


52 53 54
class TestScaleOpScaleVariable(OpTest):
    def setUp(self):
        self.op_type = "scale"
55
        self.python_api = paddle.scale
56
        self.dtype = np.float64
57 58 59 60
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
61
            'ScaleTensor': np.array([self.scale]).astype('float64'),
62 63 64 65 66 67 68 69
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
70
        self.check_output(check_eager=True)
71 72

    def test_check_grad(self):
73
        self.check_grad(['X'], 'Out', check_eager=True)
74 75


76
class TestScaleOpSelectedRows(unittest.TestCase):
C
chengduo 已提交
77 78 79
    def init_dtype_type(self):
        pass

80 81 82
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

83
        self.dtype = np.float64
C
chengduo 已提交
84 85
        self.init_dtype_type()

86 87 88 89 90 91 92 93 94
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
95 96 97
        in_array = np.random.random((len(in_rows), in_row_numel)).astype(
            self.dtype
        )
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
118
        assert in_rows == out_rows
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


135 136 137
class TestScaleRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
2
201716010711 已提交
138
            paddle.scale([10])
139 140 141 142

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
143
# Add FP16 test
144 145 146
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
147 148 149 150 151 152 153
class TestScaleFp16Op(TestScaleOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
154
            self.check_output_with_place(place, atol=0.002, check_eager=True)
C
chengduo 已提交
155 156 157 158

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
159 160 161
            self.check_grad_with_place(
                place, ["X"], "Out", max_relative_error=0.05, check_eager=True
            )
C
chengduo 已提交
162 163


164 165 166
class TestScaleBF16Op(OpTest):
    def setUp(self):
        self.op_type = "scale"
167
        self.python_api = paddle.scale
168 169 170 171 172 173 174 175
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
176
        self.check_output(check_eager=True)
177 178

    def test_check_grad(self):
179
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8, check_eager=True)
180 181


182 183 184
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


200 201 202 203 204 205 206 207 208 209 210 211 212 213
class TestScaleApiStatic(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
214
        np.testing.assert_array_equal(out[0], input * 2.0 + 3.0)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230


class TestScaleInplaceApiStatic(TestScaleApiStatic):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
231
        np.testing.assert_array_equal(out.numpy(), input * 2.0 + 3.0)
232 233 234 235 236 237 238 239
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class TestScaleDoubleGradCheck(unittest.TestCase):
    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

255 256 257 258 259 260
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.scale_wrapper, [data], out, x_init=[data_arr], place=place
        )
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestScaleTripleGradCheck(unittest.TestCase):
    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

286 287 288 289 290 291
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.scale_wrapper, [data], out, x_init=[data_arr], place=place
        )
292 293 294 295 296 297 298 299 300 301

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


302 303 304 305 306 307 308 309 310 311 312 313 314 315
class TestScaleOpZeroNumelVariable(unittest.TestCase):
    def test_check_zero_numel_cpu(self):
        paddle.set_device('cpu')
        data = paddle.ones([0, 1])
        out = paddle.scale(data, 2)
        self.assertEqual(out, data)

        if paddle.is_compiled_with_cuda():
            paddle.set_device('gpu')
            data = paddle.ones([0, 1])
            out = paddle.scale(data, 2)
            self.assertEqual(out, data)


Q
qijun 已提交
316
if __name__ == "__main__":
Y
Yu Yang 已提交
317
    unittest.main()