test_dist_fleet_minimize.py 9.1 KB
Newer Older
L
lxsbupt 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

import paddle
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid

paddle.enable_static()

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSMinimize(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = paddle.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = paddle.sum(cond)
            acc = paddle.divide(
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'
                ),
                name="simnet_acc",
            )
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = paddle.subtract(
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'
                ),
                cos_q_pt,
            )
            loss_op2 = paddle.add(loss_op1, cos_q_nt)
            loss_op3 = paddle.maximum(
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'
                ),
                loss_op2,
            )
            avg_cost = paddle.mean(loss_op3)
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
        q = fluid.layers.data(name="1", shape=[1], dtype="int64", lod_level=1)
        # embedding
        q_emb = fluid.contrib.layers.sparse_embedding(
            input=q,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr,
            ),
        )
        q_emb = paddle.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = paddle.nn.functional.softsign(q_sum)
        # fc layer after conv
C
Charles-hit 已提交
88 89
        q_fc = paddle.static.nn.fc(
            x=q_ss,
L
lxsbupt 已提交
90
            size=hid_dim,
C
Charles-hit 已提交
91
            weight_attr=fluid.ParamAttr(
L
lxsbupt 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
                learning_rate=base_lr,
            ),
        )
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
        pt = fluid.layers.data(name="2", shape=[1], dtype="int64", lod_level=1)
        # embedding
        pt_emb = fluid.contrib.layers.sparse_embedding(
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr,
            ),
        )
        pt_emb = paddle.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = paddle.nn.functional.softsign(pt_sum)
        # fc layer
C
Charles-hit 已提交
116 117
        pt_fc = paddle.static.nn.fc(
            x=pt_ss,
L
lxsbupt 已提交
118
            size=hid_dim,
C
Charles-hit 已提交
119
            weight_attr=fluid.ParamAttr(
L
lxsbupt 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
        # nt
        nt = fluid.layers.data(name="3", shape=[1], dtype="int64", lod_level=1)
        # embedding
        nt_emb = fluid.contrib.layers.sparse_embedding(
            input=nt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr,
            ),
        )
        nt_emb = paddle.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = paddle.nn.functional.softsign(nt_sum)
        # fc layer
C
Charles-hit 已提交
143 144
        nt_fc = paddle.static.nn.fc(
            x=nt_ss,
L
lxsbupt 已提交
145
            size=hid_dim,
C
Charles-hit 已提交
146
            weight_attr=fluid.ParamAttr(
L
lxsbupt 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr,
            ),
            bias_attr=fluid.ParamAttr(name="__fc_b__"),
        )
        cos_q_pt = paddle.nn.functional.cosine_similarity(q_fc, pt_fc)
        cos_q_nt = paddle.nn.functional.cosine_similarity(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def gen_sparse_config(self):
        """
        gen sparse config
        """
        sparse_config = dict()
        # sparse_config['sparse_table_class'] = "DownpourSparseSSDTable"
        sparse_config['sparse_table_class'] = "DownpourSparseTable"
        sparse_config['sparse_compress_in_save'] = True
        sparse_config['sparse_shard_num'] = 67
        # sparse_config['sparse_accessor_class'] = "DownpourCtrAccessor"
        sparse_config[
            'sparse_accessor_class'
        ] = "DownpourCtrDymfAccessor"  # for variable embedding
        sparse_config['sparse_learning_rate'] = 0.05  # sparse_lr
        sparse_config['sparse_initial_g2sum'] = 3
        sparse_config['sparse_initial_range'] = 0.02  # init_range
        sparse_config['sparse_weight_bounds'] = [-10.0, 10.0]
        sparse_config['sparse_embedx_dim'] = 8  # emb_size
        sparse_config['sparse_embedx_threshold'] = 10
        sparse_config['sparse_nonclk_coeff'] = 0.1
        sparse_config['sparse_click_coeff'] = 1.0
        sparse_config['sparse_base_threshold'] = 0
        sparse_config['sparse_delta_threshold'] = 0.25
        sparse_config['sparse_delta_keep_days'] = 16.0
        sparse_config['sparse_show_click_decay_rate'] = 0.98
        sparse_config['sparse_delete_threshold'] = 0.8
        sparse_config['sparse_delete_after_unseen_days'] = 30

        sparse_config['embed_sparse_optimizer'] = "adagrad"  # op_type
        sparse_config['embed_sparse_learning_rate'] = 0.05  # sparse_lr
        sparse_config['embed_sparse_initial_range'] = 0
        sparse_config[
            'embed_sparse_beta1_decay_rate'
        ] = 0.9  # args.beta1_decay_rate
        sparse_config[
            'embed_sparse_beta2_decay_rate'
        ] = 0.999  # args.beta2_decay_rate
        sparse_config['embed_sparse_weight_bounds'] = [-10.0, 10.0]

        sparse_config['embedx_sparse_optimizer'] = "adagrad"  # op_type
        sparse_config['embedx_sparse_learning_rate'] = 0.05  # sparse_lr
        sparse_config['embedx_sparse_initial_range'] = 0.02  # init_range
        sparse_config[
            'embedx_sparse_beta1_decay_rate'
        ] = 0.9  # args.beta1_decay_rate
        sparse_config[
            'embedx_sparse_beta2_decay_rate'
        ] = 0.999  # args.beta2_decay_rate
        sparse_config['embedx_sparse_weight_bounds'] = [-10.0, 10.0]
        # sparse_config['nodeid_slot'] = nodeid_slot
        # sparse_config['feature_learning_rate'] = feature_lr
        return sparse_config

    def test(self):
        os.environ["PADDLE_PSERVER_NUMS"] = "2"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36002,127.0.0.2:36002"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["FLAGS_selected_gpus"] = "0"

        role = role_maker.PaddleCloudRoleMaker()
        fleet.init(is_collective=True)
        loss, acc, _ = self.net()

        strategy = paddle.distributed.fleet.DistributedStrategy()
        configs = {"use_ps_gpu": 0, "launch_barrier": False}
        strategy.a_sync_configs = configs
        strategy.a_sync = True

        sparse_config = dict()
        sparse_config['embedding'] = self.gen_sparse_config()
        strategy.fleet_desc_configs = sparse_config

        optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(loss)


if __name__ == '__main__':
    unittest.main()