test_data_balance.py 7.9 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
import paddle.v2 as paddle
import numpy as np


class TestDataBalance(unittest.TestCase):
    def prepare_data(self):
        def fake_data_generator():
24
            for n in range(self.total_ins_num):
F
fengjiayi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
                yield np.ones((3, 4)) * n, n

        # Prepare data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(
                fake_data_generator, batch_size=self.batch_size)
            feeder = fluid.DataFeeder(
                feed_list=[
                    fluid.layers.data(
                        name='image', shape=[3, 4], dtype='float32'),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
                self.data_file_name, reader, feeder)

    def prepare_lod_data(self):
        def fake_data_generator():
44
            for n in range(1, self.total_ins_num + 1):
F
fengjiayi 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
                d1 = (np.ones((n, 3)) * n).astype('float32')
                d2 = (np.array(n).reshape((1, 1))).astype('int32')
                yield d1, d2

        # Prepare lod data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            with fluid.recordio_writer.create_recordio_writer(
                    filename=self.lod_data_file_name) as writer:
                eof = False
                generator = fake_data_generator()
                while (not eof):
                    data_batch = [
                        np.array([]).reshape((0, 3)), np.array([]).reshape(
                            (0, 1))
                    ]
                    lod = [0]
61
                    for _ in range(self.batch_size):
F
fengjiayi 已提交
62
                        try:
63
                            ins = next(generator)
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                        except StopIteration:
                            eof = True
                            break
                        for i, d in enumerate(ins):
                            data_batch[i] = np.concatenate(
                                (data_batch[i], d), axis=0)
                        lod.append(lod[-1] + ins[0].shape[0])
                    if data_batch[0].shape[0] > 0:
                        for i, d in enumerate(data_batch):
                            t = fluid.LoDTensor()
                            t.set(data_batch[i], fluid.CPUPlace())
                            if i == 0:
                                t.set_lod([lod])
                            writer.append_tensor(t)
                        writer.complete_append_tensor()

    def setUp(self):
        self.use_cuda = fluid.core.is_compiled_with_cuda()
        self.data_file_name = './data_balance_test.recordio'
        self.lod_data_file_name = './data_balance_with_lod_test.recordio'
        self.total_ins_num = 50
        self.batch_size = 10
        self.prepare_data()
        self.prepare_lod_data()

    def main(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.data_file_name],
                shapes=[[-1, 3, 4], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            if self.use_cuda:
                data_reader = fluid.layers.double_buffer(data_reader)
            image, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)

Y
yuyang18 已提交
106 107
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_data_balance = True
F
fengjiayi 已提交
108
            parallel_exe = fluid.ParallelExecutor(
Y
yuyang18 已提交
109 110 111
                use_cuda=self.use_cuda,
                main_program=main_prog,
                build_strategy=build_strategy)
F
fengjiayi 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124

            if (parallel_exe.device_count > self.batch_size):
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [image.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    image_val, label_val = parallel_exe.run(fetch_list,
                                                            return_numpy=True)
125
                except fluid.core.EOFException:
F
fengjiayi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                    break
                ins_num = image_val.shape[0]
                broadcasted_label = np.ones(
                    (ins_num, 3, 4)) * label_val.reshape((ins_num, 1, 1))
                self.assertEqual(image_val.all(), broadcasted_label.all())
                for l in label_val:
                    self.assertFalse(data_appeared[l[0]])
                    data_appeared[l[0]] = True
            for i in data_appeared:
                self.assertTrue(i)

    def main_lod(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.lod_data_file_name],
                shapes=[[-1, 3], [-1, 1]],
                lod_levels=[1, 0],
Y
yuyang18 已提交
145
                dtypes=['float32', 'int32'])
F
fengjiayi 已提交
146 147 148 149 150
            ins, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
Y
yuyang18 已提交
151 152
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_data_balance = True
F
fengjiayi 已提交
153
            parallel_exe = fluid.ParallelExecutor(
Y
yuyang18 已提交
154 155 156
                use_cuda=self.use_cuda,
                main_program=main_prog,
                build_strategy=build_strategy)
F
fengjiayi 已提交
157

Y
yuyang18 已提交
158
            if parallel_exe.device_count > self.batch_size:
F
fengjiayi 已提交
159 160 161 162 163 164 165 166 167 168 169
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [ins.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    ins_tensor, label_tensor = parallel_exe.run(
                        fetch_list, return_numpy=False)
170
                except fluid.core.EOFException:
F
fengjiayi 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                    break

                ins_val = np.array(ins_tensor)
                label_val = np.array(label_tensor)
                ins_lod = ins_tensor.lod()[0]
                self.assertEqual(ins_val.shape[1], 3)
                self.assertEqual(label_val.shape[1], 1)
                self.assertEqual(len(ins_lod) - 1, label_val.shape[0])
                for i in range(0, len(ins_lod) - 1):
                    ins_elem = ins_val[ins_lod[i]:ins_lod[i + 1]][:]
                    label_elem = label_val[i][0]
                    self.assertEqual(ins_elem.all(), label_elem.all())
                    self.assertFalse(data_appeared[int(label_elem - 1)])
                    data_appeared[int(label_elem - 1)] = True

            for i in data_appeared:
                self.assertTrue(i)

    def test_all(self):
        self.main()
        self.main_lod()
Y
yuyang18 已提交
192 193 194 195


if __name__ == '__main__':
    unittest.main()