fused_elemwise_activation_op.cc 8.4 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>

#include "paddle/fluid/operators/fused_elemwise_activation_op.h"

namespace paddle {
namespace operators {

class FusedElemwiseActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("X"),
        "Input(X) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput("Y"),
        "Input(Y) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FusedElemwiseActivationOp op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                      "Rank of first input must >= rank of second input.");

    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(ctx.Input<framework::Tensor>("X")->type(),
                      ctx.Input<framework::Tensor>("Y")->type(),
                      "The element's type of input should be the same.");
    auto input_data_type =
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedElemwiseActivationMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(vector<Tensor>)");
    AddInput("Y", "(vector<Tensor>)");
    AddOutput("Out", "vector<Tensor>");
    AddAttr<int>("axis",
                 "axis is used by elementwise_op, the default value is -1.")
        .SetDefault(-1);
    AddAttr<float>("scale",
                   "scale is used by scale_op, the default value is 0.0.")
        .SetDefault(0.0);
    AddAttr<bool>("recomputation",
                  "Whether to recompute the Out."
                  "fused_elemwise_activation_grad has two methods to get the "
                  "dx and dy, one "
                  "is to use the 'Out', and the other is not to use it. "
                  "The former method will save the time of recomputing the "
                  "'Out', but it must occupy the memory to store the 'out'. "
                  "While, the later method can avoid occupying the memory, "
                  "but it must recompute the 'Out'. The default value is true.")
        .SetDefault(true);
    AddAttr<std::vector<std::string>>("functor_list",
                                      "The functors that should be fused.")
        .AddCustomChecker([&](const std::vector<std::string> &functor_list) {
          PADDLE_ENFORCE(ValidCheck(functor_list));
        });

    AddComment(R"DOC(
FusedElemwiseActivation Operator.

At present, FusedElemwiseActivation only supports Two kinds of compound
operators (elementwise_op and activation_op):

    Z = Binary(X, Unary(Y))
    Z = Unary(Binary(X, Y))

The attributions of activation_op can be get from fused_elemwise_activation_op's
attributions. functor_list records the functors to be fused, for example
"scale,elementwise_add".

)DOC");
  }

 private:
  bool ValidCheck(const std::vector<std::string> &functors) {
    std::unordered_set<std::string> unary_fun = {"scale", "relu"};
    std::unordered_set<std::string> binary_fun = {"elementwise_add"};

    std::string unary_fun_str;
    if (binary_fun.count(functors[0])) {
      unary_fun_str = functors[1];
    } else if (binary_fun.count(functors[1])) {
      unary_fun_str = functors[0];
    } else {
      PADDLE_THROW("%s and %s are not included in fused_list.", functors[0],
                   functors[1]);
    }
    PADDLE_ENFORCE_EQ(unary_fun.count(unary_fun_str), 1,
                      "%s is not included in fused_list.", unary_fun_str);
    return true;
  }
};

class FusedElemwiseActivationGradMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType(this->ForwardOpType() + "_grad");

    for (auto &input_param : this->InputNames()) {
      op_desc_ptr->SetInput(input_param, this->Input(input_param));
      op_desc_ptr->SetOutput(framework::GradVarName(input_param),
                             this->InputGrad(input_param, true));
    }

    for (auto &output_param : this->OutputNames()) {
      op_desc_ptr->SetInput(output_param, this->Output(output_param));
      op_desc_ptr->SetInput(framework::GradVarName(output_param),
                            this->OutputGrad(output_param));
    }
    op_desc_ptr->SetAttrMap(this->Attrs());

    std::vector<std::string> functor_names =
        boost::get<std::vector<std::string>>(
            op_desc_ptr->GetAttr("functor_list"));
    functor_names[0] += "_grad";
    functor_names[1] += "_grad";
    op_desc_ptr->SetAttr("functor_list", functor_names);
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

class FusedElemwiseActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Rank of first input must >= rank of second input.");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type_index = ctx.Input<framework::Tensor>("X")->type();
    PADDLE_ENFORCE_EQ(input_data_type_index,
                      ctx.Input<framework::Tensor>("Y")->type(),
                      "The element's type of input should be the same.");
    PADDLE_ENFORCE_EQ(
        input_data_type_index,
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type(),
        "The element's type of input should be the same.");

    auto input_data_type = framework::ToDataType(input_data_type_index);
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_elemwise_activation, ops::FusedElemwiseActivationOp,
                  ops::FusedElemwiseActivationMaker,
                  ops::FusedElemwiseActivationGradMaker);
REGISTER_OPERATOR(fused_elemwise_activation_grad,
                  ops::FusedElemwiseActivationOpGrad);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       float>,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       double>);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation_grad,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           float>,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           double>);