io.py 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import errno
import inspect
import logging
import os
19
import warnings
20

21
import numpy as np
22 23

import paddle
24 25 26
from paddle.fluid import (
    CompiledProgram,
    Program,
27 28 29
    Variable,
    core,
    default_main_program,
30
    program_guard,
31
    unique_name,
32
)
33
from paddle.fluid.executor import global_scope
34 35
from paddle.fluid.framework import Parameter, static_only
from paddle.fluid.io import append_fetch_ops, prepend_feed_ops
36 37
from paddle.fluid.log_helper import get_logger

38 39
__all__ = []

40 41 42
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
43 44


45 46 47
def _check_args(caller, args, supported_args=None, deprecated_args=None):
    supported_args = [] if supported_args is None else supported_args
    deprecated_args = [] if deprecated_args is None else deprecated_args
48 49
    for arg in args:
        if arg in deprecated_args:
50
            raise ValueError(
51 52 53 54
                "argument '{}' in function '{}' is deprecated, only {} are supported.".format(
                    arg, caller, supported_args
                )
            )
55 56
        elif arg not in supported_args:
            raise ValueError(
57 58 59 60
                "function '{}' doesn't support argument '{}',\n only {} are supported.".format(
                    caller, arg, supported_args
                )
            )
61 62


63 64 65 66 67
def _check_vars(name, var_list):
    if not isinstance(var_list, list):
        var_list = [var_list]
    if not var_list or not all([isinstance(var, Variable) for var in var_list]):
        raise ValueError(
68 69
            "'{}' should be a Variable or a list of Variable.".format(name)
        )
70 71 72 73 74 75


def _normalize_path_prefix(path_prefix):
    """
    convert path_prefix to absolute path.
    """
76
    if not isinstance(path_prefix, str):
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        raise ValueError("'path_prefix' should be a string.")
    if path_prefix.endswith("/"):
        raise ValueError("'path_prefix' should not be a directory")
    path_prefix = os.path.normpath(path_prefix)
    path_prefix = os.path.abspath(path_prefix)
    return path_prefix


def _get_valid_program(program=None):
    """
    return default main program if program is None.
    """
    if program is None:
        program = default_main_program()
    elif isinstance(program, CompiledProgram):
        program = program._program
        if program is None:
            raise TypeError(
                "The type of input program is invalid, expected tyep is Program, but received None"
            )
        warnings.warn(
98 99
            "The input is a CompiledProgram, this is not recommended."
        )
100 101 102
    if not isinstance(program, Program):
        raise TypeError(
            "The type of input program is invalid, expected type is fluid.Program, but received %s"
103 104
            % type(program)
        )
105 106 107 108 109 110
    return program


def _clone_var_in_block(block, var):
    assert isinstance(var, Variable)
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
111 112 113 114 115 116 117 118
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True,
        )
119
    else:
120 121 122 123 124 125 126
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True,
        )
127 128


129
def normalize_program(program, feed_vars, fetch_vars):
130
    """
131 132 133 134 135

    Normalize/Optimize a program according to feed_vars and fetch_vars.

    Args:
        program(Program): Specify a program you want to optimize.
136 137
        feed_vars(Tensor | list[Tensor]): Variables needed by inference.
        fetch_vars(Tensor | list[Tensor]): Variables returned by inference.
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    Returns:
        Program: Normalized/Optimized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # normalize main program.
S
Shibo Tao 已提交
162
            program = paddle.static.default_main_program()
163 164
            normalized_program = paddle.static.normalize_program(program, [image], [predict])

165
    """
166 167
    if not isinstance(program, Program):
        raise TypeError(
168 169 170
            "program type must be `fluid.Program`, but received `%s`"
            % type(program)
        )
171 172 173 174
    if not isinstance(feed_vars, list):
        feed_vars = [feed_vars]
    if not all(isinstance(v, Variable) for v in feed_vars):
        raise TypeError(
175 176
            "feed_vars type must be a Variable or a list of Variable."
        )
177 178 179 180
    if not isinstance(fetch_vars, list):
        fetch_vars = [fetch_vars]
    if not all(isinstance(v, Variable) for v in fetch_vars):
        raise TypeError(
181 182
            "fetch_vars type must be a Variable or a list of Variable."
        )
183

184 185 186 187 188 189
    # remind users to set auc_states to 0 if auc op were found.
    for op in program.global_block().ops:
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
        if op.type == 'auc':
190 191 192 193
            warnings.warn(
                "Be sure that you have set auc states to 0 "
                "before saving inference model."
            )
194 195 196 197 198 199 200 201
            break

    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(program):
        uniq_fetch_vars = []
        for i, var in enumerate(fetch_vars):
202
            if var.dtype != paddle.bool:
2
201716010711 已提交
203
                var = paddle.scale(
204 205
                    var, 1.0, name="save_infer_model/scale_{}".format(i)
                )
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            uniq_fetch_vars.append(var)
        fetch_vars = uniq_fetch_vars

    # serialize program
    copy_program = program.clone()
    global_block = copy_program.global_block()
    remove_op_idx = []
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            remove_op_idx.append(i)
    for idx in remove_op_idx[::-1]:
        global_block._remove_op(idx)
    copy_program.desc.flush()

    feed_var_names = [var.name for var in feed_vars]
    copy_program = copy_program._prune_with_input(
223 224
        feeded_var_names=feed_var_names, targets=fetch_vars
    )
225 226 227 228 229 230 231 232 233 234
    copy_program = copy_program._inference_optimize(prune_read_op=True)
    fetch_var_names = [var.name for var in fetch_vars]
    prepend_feed_ops(copy_program, feed_var_names)
    append_fetch_ops(copy_program, fetch_var_names)
    copy_program.desc._set_version()
    return copy_program


def is_persistable(var):
    """
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            paddle.enable_static()
            param = fluid.default_main_program().global_block().var('fc.b')
            res = fluid.io.is_persistable(param)
    """
255 256 257 258 259
    if (
        var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var.desc.type() == core.VarDesc.VarType.READER
    ):
260 261 262 263 264
        return False
    return var.persistable


@static_only
265
def serialize_program(feed_vars, fetch_vars, **kwargs):
266 267 268 269 270
    """

    Serialize default main program according to feed_vars and fetch_vars.

    Args:
271 272 273 274 275
        feed_vars(Tensor | list[Tensor]): Tensor needed by inference.
        fetch_vars(Tensor | list[Tensor]): Tensor returned by inference.
        kwargs: Supported keys including ``program``. Attention please, kwargs is used for backward compatibility mainly.

            - program(Program): specify a program if you don't want to use default main program.
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    Returns:
        bytes: serialized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

311
    program = _get_valid_program(kwargs.get('program', None))
312
    program = normalize_program(program, feed_vars, fetch_vars)
313 314 315 316 317 318 319 320 321 322 323
    return _serialize_program(program)


def _serialize_program(program):
    """
    serialize given program to bytes.
    """
    return program.desc.serialize_to_string()


@static_only
324
def serialize_persistables(feed_vars, fetch_vars, executor, **kwargs):
325 326 327 328 329
    """

    Serialize parameters using given executor and default main program according to feed_vars and fetch_vars.

    Args:
330 331 332 333 334
        feed_vars(Tensor | list[Tensor]): Tensor needed by inference.
        fetch_vars(Tensor | list[Tensor]): Tensor returned by inference.
        kwargs: Supported keys including ``program``. Attention please, kwargs is used for backward compatibility mainly.

            - program(Program): specify a program if you don't want to use default main program.
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    Returns:
        bytes: serialized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

371
    program = _get_valid_program(kwargs.get('program', None))
372
    program = normalize_program(program, feed_vars, fetch_vars)
373 374 375 376 377 378 379 380 381 382
    return _serialize_persistables(program, executor)


def _serialize_persistables(program, executor):
    """
    Serialize parameters using given program and executor.
    """
    vars_ = list(filter(is_persistable, program.list_vars()))
    # warn if no variable found in model
    if len(vars_) == 0:
383 384 385 386
        warnings.warn(
            "no variable in your model, please ensure there are any "
            "variables in your model to save"
        )
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        return None
    # create a new program and clone persitable vars to it
    save_program = Program()
    save_block = save_program.global_block()
    save_var_map = {}
    for var in vars_:
        if var.type != core.VarDesc.VarType.RAW:
            var_copy = _clone_var_in_block(save_block, var)
            save_var_map[var_copy.name] = var

    # create in_vars and out_var, then append a save_combine op to save_program
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var_name = unique_name.generate("out_var")
403 404 405
    out_var = save_block.create_var(
        type=core.VarDesc.VarType.RAW, name=out_var_name
    )
406
    out_var.desc.set_persistable(True)
407 408 409 410 411 412
    save_block.append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '', 'save_to_memory': True},
    )
413 414 415 416 417 418 419 420 421 422 423 424 425
    # run save_program to save vars
    # NOTE(zhiqiu): save op will add variable kLookupTablePath to save_program.desc,
    # which leads to diff between save_program and its desc. Call _sync_with_cpp
    # to keep consistency.
    save_program._sync_with_cpp()
    executor.run(save_program)
    # return serialized bytes in out_var
    return global_scope().find_var(out_var_name).get_bytes()


def save_to_file(path, content):
    """
    Save content to given path.
426

427 428 429
    Args:
        path(str): Path to write content to.
        content(bytes): Content to write.
430

431 432
    Returns:
        None
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            path_prefix = "./infer_model"
            # 用户自定义网络,此处用 softmax 回归为例。
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
            loss = paddle.nn.functional.cross_entropy(predict, label)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            # 序列化参数
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)
            # 将序列化之后的参数保存到文件
            params_path = path_prefix + ".params"
            paddle.static.save_to_file(params_path, serialized_params)
452 453 454 455 456 457 458 459
    """

    if not isinstance(content, bytes):
        raise ValueError("'content' type should be bytes.")
    with open(path, "wb") as f:
        f.write(content)


460
@static_only
461 462 463
def save_inference_model(
    path_prefix, feed_vars, fetch_vars, executor, **kwargs
):
464 465
    """
    Save current model and its parameters to given path. i.e.
466 467 468 469
    Given ``path_prefix = "PATH/modelname"``, after invoking
    ``save_inference_model(path_prefix, feed_vars, fetch_vars, executor)``,
    you will find two files named ``modelname.pdmodel`` and ``modelname.pdiparams``
    under ``PATH``, which represent your model and parameters respectively.
470 471 472

    Args:
        path_prefix(str): Directory path to save model + model name without suffix.
473 474
        feed_vars(Tensor | list[Tensor]): Variables needed by inference.
        fetch_vars(Tensor | list[Tensor]): Variables returned by inference.
475 476
        executor(Executor): The executor that saves the inference model. You can refer
                            to :ref:`api_guide_executor_en` for more details.
477
        kwargs: Supported keys including 'program' and "clip_extra". Attention please, kwargs is used for backward compatibility mainly.
478 479 480

            - program(Program): specify a program if you don't want to use default main program.

481
            - clip_extra(bool): the flag indicating whether to clip extra information for every operator. Default: True.
482

483 484 485 486 487 488 489 490 491 492 493 494 495
    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
496 497 498
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
499

500
            loss = paddle.nn.functional.cross_entropy(predict, label)
501

502 503
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
504 505 506 507

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
508
            paddle.static.save_inference_model(path_prefix, [image], [predict], exe)
509 510 511 512 513 514 515

            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict).
            # The pruned inference program is going to be saved in file "./infer_model.pdmodel"
            # and parameters are going to be saved in file "./infer_model.pdiparams".

    """
516

517
    # check path_prefix, set model_path and params_path
518
    path_prefix = _normalize_path_prefix(path_prefix)
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    try:
        # mkdir may conflict if pserver and trainer are running on the same machine
        dirname = os.path.dirname(path_prefix)
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
    model_path = path_prefix + ".pdmodel"
    params_path = path_prefix + ".pdiparams"
    if os.path.isdir(model_path):
        raise ValueError("'{}' is an existing directory.".format(model_path))
    if os.path.isdir(params_path):
        raise ValueError("'{}' is an existing directory.".format(params_path))

    # verify feed_vars
534
    _check_vars('feed_vars', feed_vars)
535
    # verify fetch_vars
536
    _check_vars('fetch_vars', fetch_vars)
537

538
    program = _get_valid_program(kwargs.get('program', None))
539
    clip_extra = kwargs.get('clip_extra', True)
540
    program = normalize_program(program, feed_vars, fetch_vars)
541
    # serialize and save program
542
    program_bytes = _serialize_program(
543 544
        program._remove_training_info(clip_extra=clip_extra)
    )
545 546 547
    save_to_file(model_path, program_bytes)
    # serialize and save params
    params_bytes = _serialize_persistables(program, executor)
548 549 550
    # program may not contain any parameter and just compute operation
    if params_bytes is not None:
        save_to_file(params_path, params_bytes)
551

552

553 554 555
@static_only
def deserialize_program(data):
    """
556

557 558 559 560
    Deserialize given data to a program.

    Args:
        data(bytes): serialized program.
561

562 563
    Returns:
        Program: deserialized program.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

590 591 592
    """
    program = Program.parse_from_string(data)
    if not core._is_program_version_supported(program._version()):
593 594 595
        raise ValueError(
            "Unsupported program version: %d\n" % program._version()
        )
596 597 598 599 600 601 602 603
    return program


@static_only
def deserialize_persistables(program, data, executor):
    """

    Deserialize given data to parameters according to given program and executor.
604

605 606 607 608
    Args:
        program(Program): program that contains parameter names (to deserialize).
        data(bytes): serialized parameters.
        executor(Executor): executor used to run load op.
609

610 611
    Returns:
        Program: deserialized program.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)


640 641 642
    """
    if not isinstance(program, Program):
        raise TypeError(
643 644 645
            "program type must be `fluid.Program`, but received `%s`"
            % type(program)
        )
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    # load params to a tmp program
    load_program = Program()
    load_block = load_program.global_block()
    vars_ = list(filter(is_persistable, program.list_vars()))

    origin_shape_map = {}
    load_var_map = {}
    check_vars = []
    sparse_vars = []
    for var in vars_:
        assert isinstance(var, Variable)
        if var.type == core.VarDesc.VarType.RAW:
            continue
        if isinstance(var, Parameter):
            origin_shape_map[var.name] = tuple(var.desc.get_shape())
        if var.type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_vars.append(var)
            continue
        var_copy = _clone_var_in_block(load_block, var)
        check_vars.append(var)
        load_var_map[var_copy.name] = var_copy

668
    if data is None:
669 670 671
        assert (
            len(origin_shape_map) == 0
        ), "Required 'data' shall be not None if program contains parameter, but received 'data' is None."
672 673
        return

674 675 676 677 678 679 680 681 682
    # append load_combine op to load parameters,
    load_var_list = []
    for name in sorted(load_var_map.keys()):
        load_var_list.append(load_var_map[name])
    load_block.append_op(
        type='load_combine',
        inputs={},
        outputs={"Out": load_var_list},
        # if load from memory, file_path is data
683 684
        attrs={'file_path': data, 'model_from_memory': True},
    )
685 686 687 688 689 690
    executor.run(load_program)
    # check var shape
    for var in check_vars:
        if not isinstance(var, Parameter):
            continue
        var_tmp = paddle.fluid.global_scope().find_var(var.name)
691
        assert var_tmp is not None, "can't not find var: " + var.name
692 693 694 695 696 697 698
        new_shape = (np.array(var_tmp.get_tensor())).shape
        assert var.name in origin_shape_map, var.name + " MUST in var list."
        origin_shape = origin_shape_map.get(var.name)
        if new_shape != origin_shape:
            raise RuntimeError(
                "Shape mismatch, program needs a parameter with shape ({}), "
                "but the loaded parameter ('{}') has a shape of ({}).".format(
699 700 701
                    origin_shape, var.name, new_shape
                )
            )
702 703 704 705 706


def load_from_file(path):
    """
    Load file in binary mode.
707

708 709
    Args:
        path(str): Path of an existed file.
710

711 712
    Returns:
        bytes: Content of file.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()
            path_prefix = "./infer_model"
            # 用户自定义网络,此处用 softmax 回归为例。
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
            loss = paddle.nn.functional.cross_entropy(predict, label)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            # 序列化参数
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)
            # 将序列化之后的参数保存到文件
            params_path = path_prefix + ".params"
            paddle.static.save_to_file(params_path, serialized_params)
            # 从文件加载序列化之后的参数
            serialized_params_copy = paddle.static.load_from_file(params_path)
735 736 737 738
    """
    with open(path, 'rb') as f:
        data = f.read()
    return data
739 740 741


@static_only
742
def load_inference_model(path_prefix, executor, **kwargs):
743 744 745 746 747 748 749 750 751 752 753
    """

    Load inference model from a given path. By this API, you can get the model
    structure(Inference Program) and model parameters.

    Args:
        path_prefix(str | None): One of the following:
          - Directory path to save model + model name without suffix.
          - Set to None when reading the model from memory.
        executor(Executor): The executor to run for loading inference model.
                            See :ref:`api_guide_executor_en` for more details about it.
754 755 756 757 758
        kwargs: Supported keys including 'model_filename', 'params_filename'. Attention please, kwargs is used for backward compatibility mainly.

            - model_filename(str): specify model_filename if you don't want to use default name.

            - params_filename(str): specify params_filename if you don't want to use default name.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

    Returns:
        list: The return of this API is a list with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.enable_static()

            # Build the model
778 779 780 781 782 783 784 785 786
            startup_prog = paddle.static.default_startup_program()
            main_prog = paddle.static.default_main_program()
            with paddle.static.program_guard(main_prog, startup_prog):
                image = paddle.static.data(name="img", shape=[64, 784])
                w = paddle.create_parameter(shape=[784, 200], dtype='float32')
                b = paddle.create_parameter(shape=[200], dtype='float32')
                hidden_w = paddle.matmul(x=image, y=w)
                hidden_b = paddle.add(hidden_w, b)
            exe = paddle.static.Executor(paddle.CPUPlace())
787 788 789 790
            exe.run(startup_prog)

            # Save the inference model
            path_prefix = "./infer_model"
791
            paddle.static.save_inference_model(path_prefix, [image], [hidden_b], exe)
792 793

            [inference_program, feed_target_names, fetch_targets] = (
794
                paddle.static.load_inference_model(path_prefix, exe))
795
            tensor_img = np.array(np.random.random((64, 784)), dtype=np.float32)
796 797 798 799 800 801 802 803 804 805 806
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

            # In this example, the inference program was saved in file
            # "./infer_model.pdmodel" and parameters were saved in file
            # " ./infer_model.pdiparams".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program to get the inference result.
    """
807
    # check kwargs
808
    supported_args = ('model_filename', 'params_filename')
809
    deprecated_args = ('pserver_endpoints',)
810
    caller = inspect.currentframe().f_code.co_name
811
    _check_args(caller, kwargs, supported_args, deprecated_args)
812 813 814 815

    # load from memory
    if path_prefix is None:
        _logger.warning("Load inference model from memory is deprecated.")
816 817
        model_filename = kwargs.get('model_filename', None)
        params_filename = kwargs.get('params_filename', None)
818 819
        if params_filename is None:
            raise ValueError(
820 821
                "params_filename cannot be None when path_prefix is None."
            )
822 823
        load_dirname = ''
        program_bytes = model_filename
824
        params_bytes = params_filename
825 826 827
    # load from file
    else:
        # check and norm path_prefix
828
        path_prefix = _normalize_path_prefix(path_prefix)
829 830 831

        # set model_path and params_path in new way,
        # path_prefix represents a file path without suffix in this case.
832
        if not kwargs:
833 834 835 836 837
            model_path = path_prefix + ".pdmodel"
            params_path = path_prefix + ".pdiparams"
        # set model_path and params_path in old way for compatible,
        # path_prefix represents a directory path.
        else:
838 839
            model_filename = kwargs.get('model_filename', None)
            params_filename = kwargs.get('params_filename', None)
840 841 842 843
            # set model_path
            if model_filename is None:
                model_path = os.path.join(path_prefix, "__model__")
            else:
844 845 846
                model_path = os.path.join(
                    path_prefix, model_filename + ".pdmodel"
                )
847 848 849 850 851 852
                if not os.path.exists(model_path):
                    model_path = os.path.join(path_prefix, model_filename)
            # set params_path
            if params_filename is None:
                params_path = os.path.join(path_prefix, "")
            else:
853 854 855
                params_path = os.path.join(
                    path_prefix, params_filename + ".pdiparams"
                )
856 857
                if not os.path.exists(params_path):
                    params_path = os.path.join(path_prefix, params_filename)
858 859 860 861 862 863
            _logger.warning(
                "The old way to load inference model is deprecated."
                " model path: {}, params path: {}".format(
                    model_path, params_path
                )
            )
864
        program_bytes = load_from_file(model_path)
865 866
        load_dirname = os.path.dirname(params_path)
        params_filename = os.path.basename(params_path)
867 868
        # load params data
        params_path = os.path.join(load_dirname, params_filename)
869 870 871
        params_bytes = None
        if os.path.exists(params_path):
            params_bytes = load_from_file(params_path)
872

873 874 875 876
    # deserialize bytes to program
    program = deserialize_program(program_bytes)
    # deserialize bytes to params
    deserialize_persistables(program, params_bytes, executor)
877 878 879 880 881 882 883 884

    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]