testTrain.py 3.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

E
emailweixu 已提交
15
from py_paddle import swig_paddle
Z
zhangjinchao01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
import paddle.trainer.config_parser
import numpy
import util


def init_params(params):
    def init_param(p):
        assert isinstance(p, swig_paddle.Parameter)
        val = p.getBuf(swig_paddle.PARAMETER_VALUE)
        assert isinstance(val, swig_paddle.Vector)
        arr = val.toNumpyArrayInplace()
        for i in xrange(len(arr)):
            arr[i] = numpy.random.uniform(-1.0, 1.0)

    for p in params:
        init_param(p)


def init_optimizers(opt_conf, params):
    opts = {}
    for param in params:
        param_conf = param.getConfig().toProto()
        opts[param.getID()] = swig_paddle.ParameterOptimizer.create(opt_conf)
        opts[param.getID()].init(param_conf.dims[1], param.getConfig())
    retv_opts = [None for _ in xrange(len(opts))]
    for k in opts:
        assert k < len(retv_opts)
        retv_opts[k] = opts[k]
    return retv_opts


def main():
    trainer_config = paddle.trainer.config_parser.parse_config(
        "./testTrainConfig.py", "")
    opt_config = trainer_config.opt_config
    print "========Optimization Config ======="
    print opt_config
    print "==================================="
    opt_config = swig_paddle.OptimizationConfig.createFromProto(opt_config)
    _temp_optimizer_ = swig_paddle.ParameterOptimizer.create(opt_config)
    enable_types = _temp_optimizer_.getParameterTypes()
    m = swig_paddle.GradientMachine.createFromConfigProto(
        trainer_config.model_config, swig_paddle.CREATE_MODE_NORMAL,
        enable_types)
    assert m is not None
    assert isinstance(m, swig_paddle.GradientMachine)
    init_params(m.getParameters())

    optimizers = init_optimizers(opt_config, m.getParameters())

    # Train One Pass.
    for optimizer in optimizers:
        optimizer.startPass()
    batch_id = 0
    while True:  # Train one batch
        batch_size = 1000
        inArgs, atEnd = util.loadMNISTTrainData(batch_size)
        if atEnd:
            break
        outArgs = swig_paddle.Arguments.createArguments(0)

        for optimizer in optimizers:
            optimizer.startBatch(batch_size)

        def update_callback(param):
            try:
                bufs = list(param.getBufs())
                opt = optimizers[param.getID()]
                opt.update(bufs, param.getConfig())
                callback = opt.needSpecialTraversal(param.getConfig())
                if callback is not None:
                    callback(bufs, param.getConfig(), swig_paddle.NO_SPARSE_ID)

            except Exception as e:
                print e

        m.forwardBackward(inArgs, outArgs, swig_paddle.PASS_TRAIN,
                          update_callback)

        for optimizer in optimizers:
            optimizer.finishBatch()

        cost_vec = outArgs.getSlotValue(0)
        assert isinstance(cost_vec, swig_paddle.Matrix)
        cost_vec = cost_vec.copyToNumpyMat()
101 102
        print 'Finish Batch', batch_id, 'with cost ', cost_vec.sum(
        ) / batch_size
Z
zhangjinchao01 已提交
103 104 105 106 107 108 109 110 111
        batch_id += 1

    for optimizer in optimizers:
        optimizer.finishPass()


if __name__ == '__main__':
    swig_paddle.initPaddle("--use_gpu=0", "--trainer_count=1")
    main()