test_collective_api_base.py 8.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import six
import sys
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
from six import string_types
29
import paddle
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveAPIRunnerBase(object):
    def get_model(self, train_prog, startup_prog, rank):
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        result = self.get_model(train_prog, startup_prog, rank)
48
        paddle.distributed.init_parallel_env()
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
        else:
            place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        np.random.seed(os.getpid())
        indata = np.random.random((10, 1000))
        fetch_list = []
        for elem in result:
            fetch_list.append(elem.name)
        out = exe.run(train_prog,
                      feed={'tindata': indata},
                      fetch_list=fetch_list)
        if six.PY2:
            print(pickle.dumps(out))
        else:
            sys.stdout.buffer.write(pickle.dumps(out))


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["deviceid"] = os.getenv("FLAGS_selected_gpus")
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
        env0 = {
            "FLAGS_selected_gpus": "0",
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w0_ep
        }

        env1 = {
            "FLAGS_selected_gpus": "1",
            "PADDLE_TRAINER_ID": "1",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w1_ep
        }
        #update environment
        env0.update(envs)
        env1.update(envs)
        tr_cmd = "%s %s"
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
L
lilong12 已提交
136 137
        tr0_pipe = open("/tmp/tr0_err_%d.log" % os.getpid(), "w")
        tr1_pipe = open("/tmp/tr1_err_%d.log" % os.getpid(), "w")
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        #print(tr0_cmd) 
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0)

        tr1_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1)

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
L
lilong12 已提交
158
        with open("/tmp/tr0_err_%d.log" % os.getpid(), "r") as f:
159
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
L
lilong12 已提交
160
        with open("/tmp/tr1_err_%d.log" % os.getpid(), "r") as f:
161
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
162 163 164 165 166 167 168 169 170 171
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
                         check_error_log=False,
                         need_envs={}):
172
        with_gloo = '0' if backend == "nccl" else '1'
173 174 175 176 177 178 179 180 181
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
            "GLOG_v": "0",
            "NCCL_P2P_DISABLE": "1",
182
            "PADDLE_WITH_GLOO": with_gloo,
183 184 185 186 187 188 189
            "BACKEND": backend,
            "PATH_ID": path_id
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
190
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file,
                                                         required_envs)
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
            self.assertTrue(np.allclose(tr_out0, need_result))
            self.assertTrue(np.allclose(tr_out1, need_result))
        elif col_type == "broadcast":
            need_result = input2
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "reduce":
            need_result = input1 + input2
            self.assertTrue(np.allclose(tr0_out, need_result))
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
        elif col_type == "allreduce":
            need_result = input1 + input2
            self.assertTrue(
                np.allclose(
                    tr0_out, need_result, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out, need_result, rtol=1e-05, atol=1e-05))
        else:
            pass