test_distributions.py 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
from paddle import fluid
from paddle.fluid import layers
from paddle.fluid.layers.distributions import *
import math


class DistributionNumpy():
    """
        Distribution is the abstract base class for probability distributions.
    """

    def sample(self):
        """Sampling from the distribution."""
        raise NotImplementedError

    def entropy(self):
        """The entropy of the distribution."""
        raise NotImplementedError

    def kl_divergence(self, other):
        """The KL-divergence between self distributions and other."""
        raise NotImplementedError

    def log_prob(self, value):
        """Log probability density/mass function."""
        raise NotImplementedError


class UniformNumpy(DistributionNumpy):
    def __init__(self, low, high):
        self.low = np.array(low).astype('float32')
        self.high = np.array(high).astype('float32')

    def sample(self, shape):
        shape = tuple(shape) + (self.low + self.high).shape
        return self.low + (np.random.uniform(size=shape) *
                           (self.high - self.low))

    def log_prob(self, value):
        lb = np.less(self.low, value).astype('float32')
        ub = np.less(value, self.high).astype('float32')
        return np.log(lb * ub) - np.log(self.high - self.low)

    def entropy(self):
        return np.log(self.high - self.low)


class NormalNumpy(DistributionNumpy):
    def __init__(self, loc, scale):
        self.loc = np.array(loc).astype('float32')
        self.scale = np.array(scale).astype('float32')

    def sample(self, shape):
        shape = tuple(shape) + (self.loc + self.scale).shape
        return self.loc + (np.random.randn(*shape) * self.scale)

    def log_prob(self, value):
        var = self.scale * self.scale
        log_scale = np.log(self.scale)
        return -((value - self.loc) * (value - self.loc)) / (
            2. * var) - log_scale - math.log(math.sqrt(2. * math.pi))

    def entropy(self):
        return 0.5 + 0.5 * np.log(np.array(2. * math.pi).astype(
            'float32')) + np.log(self.scale)

    def kl_divergence(self, other):
        var_ratio = (self.scale / other.scale)
        var_ratio = var_ratio * var_ratio
        t1 = ((self.loc - other.loc) / other.scale)
        t1 = (t1 * t1)
        return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio))


91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class CategoricalNumpy(DistributionNumpy):
    def __init__(self, logits):
        self.logits = np.array(logits).astype('float32')

    def entropy(self):
        logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
        e_logits = np.exp(logits)
        z = np.sum(e_logits, axis=-1, keepdims=True)
        prob = e_logits / z
        return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True)

    def kl_divergence(self, other):
        logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
        other_logits = other.logits - np.max(
            other.logits, axis=-1, keepdims=True)
        e_logits = np.exp(logits)
        other_e_logits = np.exp(other_logits)
        z = np.sum(e_logits, axis=-1, keepdims=True)
        other_z = np.sum(other_e_logits, axis=-1, keepdims=True)
        prob = e_logits / z
        return np.sum(prob * (logits - np.log(z) - other_logits \
            + np.log(other_z)), axis=-1, keepdims=True)


class MultivariateNormalDiagNumpy(DistributionNumpy):
    def __init__(self, loc, scale):
        self.loc = np.array(loc).astype('float32')
        self.scale = np.array(scale).astype('float32')

    def _det(self, value):
        batch_shape = list(value.shape)
        one_all = np.ones(shape=batch_shape, dtype='float32')
        one_diag = np.eye(batch_shape[0], dtype='float32')
        det_diag = np.prod(value + one_all - one_diag)

        return det_diag

    def _inv(self, value):
        batch_shape = list(value.shape)
        one_all = np.ones(shape=batch_shape, dtype='float32')
        one_diag = np.eye(batch_shape[0], dtype='float32')
        inv_diag = np.power(value, (one_all - 2 * one_diag))

        return inv_diag

    def entropy(self):
        return 0.5 * (self.scale.shape[0] *
                      (1.0 + np.log(np.array(2 * math.pi).astype('float32'))
                       ) + np.log(self._det(self.scale)))

    def kl_divergence(self, other):
        tr_cov_matmul = np.sum(self._inv(other.scale) * self.scale)
        loc_matmul_cov = np.matmul((other.loc - self.loc),
                                   self._inv(other.scale))
        tri_matmul = np.matmul(loc_matmul_cov, (other.loc - self.loc))
        k = list(self.scale.shape)[0]
        ln_cov = np.log(self._det(other.scale)) - np.log(self._det(self.scale))
        kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)

        return kl


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class DistributionTest(unittest.TestCase):
    def setUp(self, use_gpu=False):
        self.use_gpu = use_gpu
        if not use_gpu:
            place = fluid.CPUPlace()
            self.gpu_id = -1
        else:
            place = fluid.CUDAPlace(0)
            self.gpu_id = 0
        self.executor = fluid.Executor(place)

    def build_normal_program(self, test_program, batch_size, dims, loc_float,
                             scale_float, other_loc_float, other_scale_float,
                             scale_np, other_scale_np, loc_np, other_loc_np,
                             values_np):
        with fluid.program_guard(test_program):
            loc = layers.data(name='loc', shape=[dims], dtype='float32')
            scale = layers.data(name='scale', shape=[dims], dtype='float32')

            other_loc = layers.data(
                name='other_loc', shape=[dims], dtype='float32')
            other_scale = layers.data(
                name='other_scale', shape=[dims], dtype='float32')

            values = layers.data(name='values', shape=[dims], dtype='float32')

            normal_float = Normal(loc_float, scale_float)
            other_normal_float = Normal(other_loc_float, other_scale_float)

            normal_float_np_broadcast = Normal(loc_float, scale_np)
            other_normal_float_np_broadcast = Normal(other_loc_float,
                                                     other_scale_np)

            normal_np = Normal(loc_np, scale_np)
            other_normal_np = Normal(other_loc_np, other_scale_np)

            normal_variable = Normal(loc, scale)
            other_normal_variable = Normal(other_loc, other_scale)

            sample_float = normal_float.sample([batch_size, dims])
            sample_float_np_broadcast = normal_float_np_broadcast.sample(
                [batch_size, dims])
            sample_np = normal_np.sample([batch_size, dims])
            sample_variable = normal_variable.sample([batch_size, dims])

            entropy_float = normal_float.entropy()
            entropy_float_np_broadcast = normal_float_np_broadcast.entropy()
            entropy_np = normal_np.entropy()
            entropy_variable = normal_variable.entropy()

            lp_float_np_broadcast = normal_float_np_broadcast.log_prob(values)
            lp_np = normal_np.log_prob(values)
            lp_variable = normal_variable.log_prob(values)

            kl_float = normal_float.kl_divergence(other_normal_float)
            kl_float_np_broadcast = normal_float_np_broadcast.kl_divergence(
                other_normal_float_np_broadcast)
            kl_np = normal_np.kl_divergence(other_normal_np)
            kl_variable = normal_variable.kl_divergence(other_normal_variable)

        fetch_list = [
            sample_float, sample_float_np_broadcast, sample_np, sample_variable,
            entropy_float, entropy_float_np_broadcast, entropy_np,
            entropy_variable, lp_float_np_broadcast, lp_np, lp_variable,
            kl_float, kl_float_np_broadcast, kl_np, kl_variable
        ]
        feed_vars = {
            'loc': loc_np,
            'scale': scale_np,
            'other_loc': other_loc_np,
            'other_scale': other_scale_np,
            'values': values_np
        }
        return feed_vars, fetch_list

    def get_normal_random_input(self, batch_size, dims):
        loc_np = np.random.randn(batch_size, dims).astype('float32')
        other_loc_np = np.random.randn(batch_size, dims).astype('float32')

        loc_float = (np.random.ranf() - 0.5) * 4
        scale_float = (np.random.ranf() - 0.5) * 4
        while scale_float < 0:
            scale_float = (np.random.ranf() - 0.5) * 4

        other_loc_float = (np.random.ranf() - 0.5) * 4
        other_scale_float = (np.random.ranf() - 0.5) * 4
        while other_scale_float < 0:
            other_scale_float = (np.random.ranf() - 0.5) * 4

        scale_np = np.random.randn(batch_size, dims).astype('float32')
        other_scale_np = np.random.randn(batch_size, dims).astype('float32')
        values_np = np.random.randn(batch_size, dims).astype('float32')

        while not np.all(scale_np > 0):
            scale_np = np.random.randn(batch_size, dims).astype('float32')
        while not np.all(other_scale_np > 0):
            other_scale_np = np.random.randn(batch_size, dims).astype('float32')
        return loc_np, other_loc_np, loc_float, scale_float, other_loc_float, \
               other_scale_float, scale_np, other_scale_np, values_np

    def test_normal_distribution(self, batch_size=2, dims=3, tolerance=1e-6):
        test_program = fluid.Program()
        loc_np, other_loc_np, loc_float, scale_float, other_loc_float, other_scale_float, scale_np, other_scale_np, values_np = self.get_normal_random_input(
            batch_size, dims)

        feed_vars, fetch_list = self.build_normal_program(
            test_program, batch_size, dims, loc_float, scale_float,
            other_loc_float, other_scale_float, scale_np, other_scale_np,
            loc_np, other_loc_np, values_np)
        self.executor.run(fluid.default_startup_program())

        np_normal_float = NormalNumpy(loc_float, scale_float)
        np_other_normal_float = NormalNumpy(other_loc_float, other_scale_float)
        np_normal_float_np_broadcast = NormalNumpy(loc_float, scale_np)
        np_other_normal_float_np_broadcast = NormalNumpy(other_loc_float,
                                                         other_scale_np)
        np_normal = NormalNumpy(loc_np, scale_np)
        np_other_normal = NormalNumpy(other_loc_np, other_scale_np)

        gt_sample_float = np_normal_float.sample([batch_size, dims])
        gt_sample_float_np_broadcast = np_normal_float_np_broadcast.sample(
            [batch_size, dims])
        gt_sample_np = np_normal.sample([batch_size, dims])
        gt_entropy_float = np_normal_float.entropy()
        gt_entropy_float_np_broadcast = np_normal_float_np_broadcast.entropy()
        gt_entropy = np_normal.entropy()
        gt_lp_float_np_broadcast = np_normal_float_np_broadcast.log_prob(
            values_np)
        gt_lp = np_normal.log_prob(values_np)
        gt_kl_float = np_normal_float.kl_divergence(np_other_normal_float)
        gt_kl_float_np_broadcast = np_normal_float_np_broadcast.kl_divergence(
            np_other_normal_float_np_broadcast)
        gt_kl = np_normal.kl_divergence(np_other_normal)

        [
            output_sample_float, output_sample_float_np_broadcast,
            output_sample_np, output_sample_variable, output_entropy_float,
            output_entropy_float_np_broadcast, output_entropy_np,
            output_entropy_variable, output_lp_float_np_broadcast, output_lp_np,
            output_lp_variable, output_kl_float, output_kl_float_np_broadcast,
            output_kl_np, output_kl_variable
        ] = self.executor.run(program=test_program,
                              feed=feed_vars,
                              fetch_list=fetch_list)

        np.testing.assert_allclose(
299 300 301 302
            output_sample_float.shape,
            gt_sample_float.shape,
            rtol=tolerance,
            atol=tolerance)
303 304 305
        np.testing.assert_allclose(
            output_sample_float_np_broadcast.shape,
            gt_sample_float_np_broadcast.shape,
306 307
            rtol=tolerance,
            atol=tolerance)
308
        np.testing.assert_allclose(
309 310 311 312
            output_sample_np.shape,
            gt_sample_np.shape,
            rtol=tolerance,
            atol=tolerance)
313
        np.testing.assert_allclose(
314 315 316 317
            output_sample_variable.shape,
            gt_sample_np.shape,
            rtol=tolerance,
            atol=tolerance)
318
        np.testing.assert_allclose(
319 320 321 322
            output_entropy_float,
            gt_entropy_float,
            rtol=tolerance,
            atol=tolerance)
323 324 325
        np.testing.assert_allclose(
            output_entropy_float_np_broadcast,
            gt_entropy_float_np_broadcast,
326 327
            rtol=tolerance,
            atol=tolerance)
328
        np.testing.assert_allclose(
329
            output_entropy_np, gt_entropy, rtol=tolerance, atol=tolerance)
330
        np.testing.assert_allclose(
331
            output_entropy_variable, gt_entropy, rtol=tolerance, atol=tolerance)
332 333 334
        np.testing.assert_allclose(
            output_lp_float_np_broadcast,
            gt_lp_float_np_broadcast,
335 336 337 338 339 340 341 342
            rtol=tolerance,
            atol=tolerance)
        np.testing.assert_allclose(
            output_lp_np, gt_lp, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(
            output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(
            output_kl_float, gt_kl_float, rtol=tolerance, atol=tolerance)
343 344 345
        np.testing.assert_allclose(
            output_kl_float_np_broadcast,
            gt_kl_float_np_broadcast,
346 347 348 349 350 351
            rtol=tolerance,
            atol=tolerance)
        np.testing.assert_allclose(
            output_kl_np, gt_kl, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(
            output_kl_variable, gt_kl, rtol=tolerance, atol=tolerance)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    def build_uniform_program(self, test_program, batch_size, dims, low_float,
                              high_float, high_np, low_np, values_np):
        with fluid.program_guard(test_program):
            low = layers.data(name='low', shape=[dims], dtype='float32')
            high = layers.data(name='high', shape=[dims], dtype='float32')

            values = layers.data(name='values', shape=[dims], dtype='float32')

            uniform_float = Uniform(low_float, high_float)
            uniform_float_np_broadcast = Uniform(low_float, high_np)
            uniform_np = Uniform(low_np, high_np)
            uniform_variable = Uniform(low, high)

            sample_float = uniform_float.sample([batch_size, dims])
            sample_float_np_broadcast = uniform_float_np_broadcast.sample(
                [batch_size, dims])
            sample_np = uniform_np.sample([batch_size, dims])
            sample_variable = uniform_variable.sample([batch_size, dims])

            entropy_float = uniform_float.entropy()
            entropy_float_np_broadcast = uniform_float_np_broadcast.entropy()
            entropy_np = uniform_np.entropy()
            entropy_variable = uniform_variable.entropy()

            lp_float_np_broadcast = uniform_float_np_broadcast.log_prob(values)
            lp_np = uniform_np.log_prob(values)
            lp_variable = uniform_variable.log_prob(values)

        fetch_list = [
            sample_float, sample_float_np_broadcast, sample_np, sample_variable,
            entropy_float, entropy_float_np_broadcast, entropy_np,
            entropy_variable, lp_float_np_broadcast, lp_np, lp_variable
        ]
        feed_vars = {'low': low_np, 'high': high_np, 'values': values_np}
        return feed_vars, fetch_list

    def test_uniform_distribution(self, batch_size=2, dims=3, tolerance=1e-6):
        test_program = fluid.Program()

        low_np = np.random.randn(batch_size, dims).astype('float32')
        low_float = np.random.uniform(-2, 1)
        high_float = np.random.uniform(1, 3)
        high_np = np.random.uniform(-5.0, 5.0,
                                    (batch_size, dims)).astype('float32')
        values_np = np.random.randn(batch_size, dims).astype('float32')

        feed_vars, fetch_list = self.build_uniform_program(
            test_program, batch_size, dims, low_float, high_float, high_np,
            low_np, values_np)

        self.executor.run(fluid.default_startup_program())

        np_uniform_float = UniformNumpy(low_float, high_float)
        np_uniform_float_np_broadcast = UniformNumpy(low_float, high_np)
        np_uniform = UniformNumpy(low_np, high_np)

        gt_sample_float = np_uniform_float.sample([batch_size, dims])
        gt_sample_float_np_broadcast = np_uniform_float_np_broadcast.sample(
            [batch_size, dims])
        gt_sample_np = np_uniform.sample([batch_size, dims])
        gt_entropy_float = np_uniform_float.entropy()
        gt_entropy_float_np_broadcast = np_uniform_float_np_broadcast.entropy()
        gt_entropy = np_uniform.entropy()
        gt_lp_float_np_broadcast = np_uniform_float_np_broadcast.log_prob(
            values_np)
        gt_lp = np_uniform.log_prob(values_np)

        # result calculated by paddle
        [
            output_sample_float, output_sample_float_np_broadcast,
            output_sample_np, output_sample_variable, output_entropy_float,
            output_entropy_float_np_broadcast, output_entropy_np,
            output_entropy_variable, output_lp_float_np_broadcast, output_lp_np,
            output_lp_variable
        ] = self.executor.run(program=test_program,
                              feed=feed_vars,
                              fetch_list=fetch_list)

        np.testing.assert_allclose(
432 433 434 435
            output_sample_float.shape,
            gt_sample_float.shape,
            rtol=tolerance,
            atol=tolerance)
436 437 438
        np.testing.assert_allclose(
            output_sample_float_np_broadcast.shape,
            gt_sample_float_np_broadcast.shape,
439 440
            rtol=tolerance,
            atol=tolerance)
441
        np.testing.assert_allclose(
442 443 444 445
            output_sample_np.shape,
            gt_sample_np.shape,
            rtol=tolerance,
            atol=tolerance)
446
        np.testing.assert_allclose(
447 448 449 450
            output_sample_variable.shape,
            gt_sample_np.shape,
            rtol=tolerance,
            atol=tolerance)
451
        np.testing.assert_allclose(
452 453 454 455
            output_entropy_float,
            gt_entropy_float,
            rtol=tolerance,
            atol=tolerance)
456 457 458
        np.testing.assert_allclose(
            output_entropy_float_np_broadcast,
            gt_entropy_float_np_broadcast,
459 460
            rtol=tolerance,
            atol=tolerance)
461
        np.testing.assert_allclose(
462
            output_entropy_np, gt_entropy, rtol=tolerance, atol=tolerance)
463
        np.testing.assert_allclose(
464
            output_entropy_variable, gt_entropy, rtol=tolerance, atol=tolerance)
465 466 467
        np.testing.assert_allclose(
            output_lp_float_np_broadcast,
            gt_lp_float_np_broadcast,
468 469 470 471 472 473
            rtol=tolerance,
            atol=tolerance)
        np.testing.assert_allclose(
            output_lp_np, gt_lp, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(
            output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance)
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    def test_categorical_distribution(self,
                                      batch_size=2,
                                      dims=3,
                                      tolerance=1e-6):
        test_program = fluid.Program()

        logits_np = np.random.randn(batch_size, dims).astype('float32')
        other_logits_np = np.random.randn(batch_size, dims).astype('float32')

        with fluid.program_guard(test_program):
            logits = layers.data(name='logits', shape=[dims], dtype='float32')
            other_logits = layers.data(
                name='other_logits', shape=[dims], dtype='float32')

            categorical_np = Categorical(logits_np)
            other_categorical_np = Categorical(other_logits_np)

            entropy_np = categorical_np.entropy()
            kl_np = categorical_np.kl_divergence(other_categorical_np)

        self.executor.run(fluid.default_main_program())

        np_categorical = CategoricalNumpy(logits_np)
        np_other_categorical = CategoricalNumpy(other_logits_np)
        gt_entropy_np = np_categorical.entropy()
        gt_kl_np = np_categorical.kl_divergence(np_other_categorical)

        # result calculated by paddle
        [output_entropy_np,
         output_kl_np] = self.executor.run(program=test_program,
                                           feed={'logits': logits_np},
                                           fetch_list=[entropy_np, kl_np])
        np.testing.assert_allclose(
            output_entropy_np, gt_entropy_np, rtol=tolerance)
        np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance)

    def test_multivariateNormalDiag_distribution(self,
                                                 batch_size=2,
                                                 tolerance=1e-6):
        test_program = fluid.Program()

        loc_np = np.random.random(batch_size, ).astype('float32')
        scale_np = np.diag(np.random.random(batch_size, )).astype('float32')
        other_loc_np = np.random.random(batch_size, ).astype('float32')
        other_scale_np = np.diag(np.random.random(batch_size, )).astype(
            'float32')

        with fluid.program_guard(test_program):
            loc = layers.data(
                name='loc',
                shape=[batch_size, ],
                dtype='float32',
                append_batch_size=False)
            scale = layers.data(
                name='scale',
                shape=[batch_size, batch_size],
                dtype='float32',
                append_batch_size=False)
            other_loc = layers.data(
                name='other_loc',
                shape=[batch_size, ],
                dtype='float32',
                append_batch_size=False)
            other_scale = layers.data(
                name='other_scale',
                shape=[batch_size, batch_size],
                dtype='float32',
                append_batch_size=False)

            multivariate_np = MultivariateNormalDiag(loc, scale)
            other_multivariate_np = MultivariateNormalDiag(other_loc,
                                                           other_scale)

            entropy_np = multivariate_np.entropy()
            other_entropy_np = other_multivariate_np.entropy()
            kl_np = multivariate_np.kl_divergence(other_multivariate_np)

        self.executor.run(fluid.default_main_program())

        np_multivariate = MultivariateNormalDiagNumpy(loc_np, scale_np)
        np_other_multivariate = MultivariateNormalDiagNumpy(other_loc_np,
                                                            other_scale_np)
        gt_entropy_np = np_multivariate.entropy()
        gt_kl_np = np_multivariate.kl_divergence(np_other_multivariate)

        # result calculated by paddle
        [output_entropy_np,
         output_kl_np] = self.executor.run(program=test_program,
                                           feed={
                                               'loc': loc_np,
                                               'scale': scale_np,
                                               'other_loc': other_loc_np,
                                               'other_scale': other_scale_np
                                           },
                                           fetch_list=[entropy_np, kl_np])
        np.testing.assert_allclose(
            output_entropy_np, gt_entropy_np, rtol=tolerance)
        np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance)

574 575 576

if __name__ == '__main__':
    unittest.main()