mul_op.h 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
Y
Yu Yang 已提交
16

Q
qijun 已提交
17
#include "paddle/operators/math/math_function.h"
Q
qijun 已提交
18

D
dongzhihong 已提交
19 20
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
21 22 23 24

namespace paddle {
namespace operators {

D
dongzhihong 已提交
25 26 27 28 29
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
qijun 已提交
30
template <typename Place, typename T>
D
dongzhihong 已提交
31
class MulKernel : public framework::OpKernel {
32
 public:
D
dongzhihong 已提交
33
  void Compute(const framework::ExecutionContext& context) const override {
D
dongzhihong 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    // Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = {
    //     {Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}};
    auto* X = context.Input<Tensor>("X");
    auto* Y = context.Input<Tensor>("Y");
    auto* Z = context.Output<Tensor>("Out");
    Z->mutable_data<T>(context.GetPlace());
    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);
    math::matmul<Place, T>(*X, false, *Y, false, 1, Z, 0, device_context);

    // auto X = EigenMatrix<T>::From(*input0);
    // auto Y = EigenMatrix<T>::From(*input1);
    // auto Z = EigenMatrix<T>::From(*output);
    // auto& place = context.GetEigenDevice<Place>();

    // Z.device(place) = X.contract(Y, dim_pair);
50 51
  }
};
D
dongzhihong 已提交
52

D
dongzhihong 已提交
53 54 55 56
template <typename Place, typename T>
class MulGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dongzhihong 已提交
57 58 59
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
D
dongzhihong 已提交
60

D
dongzhihong 已提交
61 62 63 64 65 66 67 68
    auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    // auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
    // auto* dYdata = dY->template mutable_data<T>(ctx.GetPlace());
    auto* device_context =
        const_cast<platform::DeviceContext*>(ctx.device_context_);
    math::matmul<Place, T>(*dOut, false, *Y, true, 1, dX, 0, device_context);
    math::matmul<Place, T>(*X, true, *dOut, false, 1, dY, 0, device_context);
D
dongzhihong 已提交
69

D
dongzhihong 已提交
70 71 72 73 74
    // auto X = EigenMatrix<T>::From(*input0);
    // auto Y = EigenMatrix<T>::From(*input1);
    // auto dOut = EigenMatrix<T>::From(*input2);
    // auto dX = EigenMatrix<T>::From(*output0);
    // auto dY = EigenMatrix<T>::From(*output1);
D
dongzhihong 已提交
75 76 77

    // dX = Out@G * Y'
    // dY = X' * Out@G
D
dongzhihong 已提交
78
    // auto place = ctx.GetEigenDevice<Place>();
D
dongzhihong 已提交
79 80
    // TODO(dzh,qijun) : need transpose feature of blas library
    // Eigen Tensor does not support it very well
D
dongzhihong 已提交
81
    // dX.device(place) = matmul(input2, )
D
dongzhihong 已提交
82 83 84
  }
};

85 86
}  // namespace operators
}  // namespace paddle