elementwise.h 5.9 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_XPU
#include <algorithm>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

22
#include "paddle/phi/backends/xpu/enforce_xpu.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "xpu/refactor/math.h"

namespace phi {

template <typename T, typename XPUType>
void XPUElementwise(const XPUContext& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* z,
                    std::function<int(xpu::Context*,
                                      const XPUType*,
                                      const XPUType*,
                                      XPUType*,
                                      const std::vector<int>&,
                                      const std::vector<int>&)> func) {
  dev_ctx.template Alloc<T>(z);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);

  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  std::vector<int> x_dims_vec(max_dim, 1);
  std::vector<int> y_dims_vec(max_dim, 1);
  if (x_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      x_dims_vec[i] = x_dims[i];
    }
  } else {
    for (int i = 0; i < x_dims.size(); i++) {
      x_dims_vec[i + axis] = x_dims[i];
    }
  }
  if (y_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      y_dims_vec[i] = y_dims[i];
    }
  } else {
    for (int i = 0; i < y_dims.size(); i++) {
      y_dims_vec[i + axis] = y_dims[i];
    }
  }
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  T* z_data = z->data<T>();

  int ret = xpu::SUCCESS;

  ret = func(dev_ctx.x_context(),
             reinterpret_cast<const XPUType*>(x_data),
             reinterpret_cast<const XPUType*>(y_data),
             reinterpret_cast<XPUType*>(z_data),
             x_dims_vec,
             y_dims_vec);
92
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "elementwise");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
}

template <typename T, typename XPUType>
void XPUElementwiseGrad(const XPUContext& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dz,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy,
                        std::function<int(xpu::Context*,
                                          const XPUType*,
                                          const XPUType*,
                                          const XPUType*,
                                          const XPUType*,
                                          XPUType*,
                                          XPUType*,
                                          const std::vector<int>&,
                                          const std::vector<int>&)> func,
                        bool use_x_y_data) {
  auto* z = &dz;
  const DDim& x_dims = x.dims();
  const DDim& y_dims = y.dims();
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  std::vector<int> x_dims_vec(max_dim, 1);
  std::vector<int> y_dims_vec(max_dim, 1);
  if (x_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      x_dims_vec[i] = x_dims[i];
    }
  } else {
    for (int i = 0; i < x_dims.size(); i++) {
      x_dims_vec[i + axis] = x_dims[i];
    }
  }
  if (y_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      y_dims_vec[i] = y_dims[i];
    }
  } else {
    for (int i = 0; i < y_dims.size(); i++) {
      y_dims_vec[i + axis] = y_dims[i];
    }
  }

  const T* x_data = use_x_y_data ? x.data<T>() : z->data<T>();
  const T* y_data = use_x_y_data ? y.data<T>() : z->data<T>();
  const T* z_data = z->data<T>();

  const T* dz_data = dz.data<T>();
  T* dx_data = nullptr;
  T* dy_data = nullptr;

  if (dx) {
    dx_data = dev_ctx.template Alloc<T>(dx);
  }
  if (dy) {
    dy_data = dev_ctx.template Alloc<T>(dy);
  }

  int ret = func(dev_ctx.x_context(),
                 reinterpret_cast<const XPUType*>(x_data),
                 reinterpret_cast<const XPUType*>(y_data),
                 reinterpret_cast<const XPUType*>(z_data),
                 reinterpret_cast<const XPUType*>(dz_data),
                 reinterpret_cast<XPUType*>(dy_data),
                 reinterpret_cast<XPUType*>(dx_data),
                 x_dims_vec,
                 y_dims_vec);
175
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "elementwise");
176 177 178 179
}

}  // namespace phi
#endif